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A Review of Self-Exciting Spatio-Temporal
Point Processes and Their Applications
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Abstract.  Self-exciting spatio-temporal point process models predict the
rate of events as a function of space, time, and the previous history of events.
These models naturally capture triggering and clustering behavior, and have
been widely used in fields where spatio-temporal clustering of events is ob-
served, such as earthquake modeling, infectious disease, and crime. In the
past several decades, advances have been made in estimation, inference, sim-
ulation, and diagnostic tools for self-exciting point process models. In this
review, I describe the basic theory, survey related estimation and inference
techniques from each field, highlight several key applications, and suggest

directions for future research.
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1. INTRODUCTION

Self-exciting spatio-temporal point processes, an ex-
tension of temporal Hawkes processes, model events
whose rate depends on the past history of the process.
These have proven useful in a wide range of fields:
seismological models of earthquakes and aftershocks,
criminological models of the dynamics of crime, epi-
demiological forecasting of the incidence of disease,
and many others. In each field, the spatio-temporal dis-
tribution of events is of scientific and practical interest,
both for prediction of new events and to improve un-
derstanding of the process generating the events. We
may have a range of statistical questions about the pro-
cess: does the rate of events vary in space and time?
What spatial or temporal covariates may be related to
the rate of events? Do events trigger other events, and
if so, how are the triggered events distributed in space
and time?

Regression is a natural first approach to answer these
questions. By dividing space into cells, either on a grid
or following natural or political boundaries, and divid-
ing the observed time window into short discrete inter-
vals, we can aggregate events and regress the number
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of events observed in a given cell and interval against
spatial and temporal covariates, prior counts of events
in neighboring cells, and so on. This approach has been
widely used in applications. However, it suffers several
disadvantages: most notably, the Modifiable Areal Unit
Problem means that estimated regression coefficients
and their variances may vary widely depending on the
boundaries or grids chosen for aggregation, and there is
no natural “correct” choice (Fotheringham and Wong,
1991).

Instead, we can model the rate of occurrence of
events directly, without aggregation, by treating the
data as arising from a point process. If the questions
of scientific interest are purely spatial, the events can
be analyzed using methods for spatial point processes
(Diggle, 2014), and their times can be ignored. If time
is important, descriptive statistics for the first- and
second-order properties of a point process, such as the
average intensity and clustering behavior, can also be
extended to spatio-temporal point processes (Diggle,
2014, Chapter 11).

When descriptive statistics are not enough to under-
stand the full dynamics of the point process, we can use
spatio-temporal point process models. These models
estimate an intensity function which predicts the rate
of events at any spatial location s and time ¢. The sim-
plest case is the homogeneous Poisson process, where
the intensity is constant in space and time. An exam-
ple of a more flexible inhomogeneous model is the
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log-Gaussian Cox process, reviewed by Diggle et al.
(2013), in which the log intensity is assumed to be
drawn from a Gaussian process. With a suitable choice
of spatio-temporal correlation function, the underlying
Gaussian process can be estimated, though this can be
computationally challenging.

Cluster processes, which directly model clustering
behavior, split the process in two: cluster centers, gen-
erally unobserved, are drawn from a parent process,
and each cluster center begets an offspring process cen-
tered at the parent (Daley and Vere-Jones, 2003, Sec-
tion 6.3). The observed process is the superposition of
the offspring processes. A common case is the Poisson
cluster process, in which cluster centers are drawn from
a Poisson process; special cases include the Neyman—
Scott process, in which offspring are also drawn from
a Poisson process, and the Matérn cluster process, in
which offspring are drawn uniformly from disks cen-
tered at the cluster centers. Common cluster processes,
other spatio-temporal models, and descriptive statistics
were reviewed by Gonzdlez et al. (2016).

In this review, I will focus on self-exciting spatio-
temporal point process models, where the rate of events
at time ¢+ may depend on the history of events at times
preceding ¢, allowing events to trigger new events.
These models are characterized by a conditional in-
tensity function, discussed in Section 2, which is con-
ditioned on the past history of the process, and has
a direct representation as a form of cluster process.
Parametrization by the conditional intensity function
has allowed a wide range of self-exciting models incor-
porating features like seasonality, spatial and tempo-
ral covariates, and inhomogeneous background event
rates to be developed across a range of application
areas.

Dependence on the past history of the process is not
captured by log-Gaussian Cox processes or spatial re-
gression, but can be of great interest in some applica-
tions: the greatest development of self-exciting mod-
els has been in seismology, where prediction of after-
shocks triggered by large earthquakes is important for
forecasting and early warning. However, literature on
theory, estimation, and inference for self-exciting mod-
els has largely been isolated within each application, so
the purpose of this review is to synthesize these devel-
opments and place them in context, drawing connec-
tions between each application and paving the way for
new uses.

Self-exciting models can be estimated using standard
maximum likelihood approaches, discussed in Sec-
tion 3.1 below. Once a self-exciting model is estimated,

we are able to answer a range of scientifically inter-
esting questions about the dynamics of their generat-
ing processes. Section 3.2 reviews stochastic decluster-
ing methods, which attribute events to the prior events
which triggered them, or to the underlying background
process, using the estimated form of the triggering
function. Section 3.3 then introduces algorithms to ef-
ficiently simulate new data, and Section 3.4 discusses
methods for estimating model standard errors and con-
fidence intervals. Bayesian approaches are discussed in
Section 3.5, and general model-selection and diagnos-
tic techniques in Section 3.6.

Finally, Section 4 introduces three major application
areas of self-exciting spatio-temporal point processes:
earthquake forecasting, models of the dynamics of
crime, and models of infectious disease. These demon-
strate the utility of self-exciting models and illustrate
each of the techniques described in Section 3. Sec-
tion 4.4 introduces a further extension of self-exciting
point processes, extending them from spatio-temporal
settings to applications involving events occurring on
networks.

2. SELF-EXCITING SPATIO-TEMPORAL
POINT PROCESSES

2.1 Hawkes Processes

Consider a temporal simple point process of event
times t; € [0,T), such that #; < t;41, and a right-
continuous counting measure N(A), defined as the
number of events occurring at times ¢ € A. Associated
with the process is the history H, of all events up to
time . We may characterize the process by its condi-
tional intensity, defined as

E[N([t,t+ At)) | H,:]
At '
The self-exciting point process model was intro-
duced for temporal point processes by Hawkes (1971).

Self-exciting processes can be defined in terms of a
conditional intensity function in the equivalent forms

A1 = fm,

'
A(IIH,)=U+/() gt —u)dN(u)

=v+ ) glt—1),

i<t

where v is a constant background rate of events and g
is the triggering function which determines the form of
the self-excitation. The process is called “self-exciting”
because the current conditional intensity is determined
by the past history H, of the process. Depending on
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the form chosen for the triggering function g, the pro-
cess may depend only on the recent history (if g decays
rapidly) or may have longer term effects. Typically, be-
cause A(t | H;) = 0, we require g(u#) > 0 for u > 0 and
gu)=0foru <0.

Hawkes processes have been put to many uses
in a range of fields, modeling financial transactions
(Bauwens and Hautsch, 2009, Bacry, Mastromatteo
and Muzy, 2015), neuron activity (Johnson, 1996), ter-
rorist attacks (Porter and White, 2012), and a wide
range of other processes. They are particularly useful
in processes that exhibit clustering: Hawkes and Oakes
(1974) demonstrated that any stationary self-exciting
point process with finite intensity may be interpreted
as a Poisson cluster process. The events may be parti-
tioned into disjoint processes: a background process of
cluster centers N,.(¢), which is simply a Poisson pro-
cess with rate v, and separate offspring processes of
triggered events inside each cluster, whose intensities
are determined by g. Each triggered event may then
trigger further events. Figure 1 illustrates this separa-
tion. The number of offspring of each event is drawn
from a Poisson distribution with mean

m= /(;Oog(t)dt.

Provided m < 1, cluster sizes are almost surely fi-
nite, as each generation of offspring follows a geo-
metric progression, with expected total cluster size of
1/(1 — m) including the initial background event. This
partitioning also permits other useful results, such as
an integral equation for the distribution of the length

of time between the first and last events of a cluster
(Hawkes and Oakes, 1974, Theorem 5).

2.2 Spatio-Temporal Form

Spatio-temporal models extend the conditional in-
tensity function to predict the rate of events at loca-
tions s € X € R and times 7 € [0, T). The function
is defined in the analogous way to temporal Hawkes
processes:

)\.(S, t | H[)
O iy EIN(BGs, As) x [1,1 4+ AD) | H]
T ASAIS0 |B(s, As)| At ’

where N(A) is again the counting measure of events
over the set A C X x [0,T) and |B(s, As)| is the
Lebesgue measure of the ball B(s, As) with radius As.

A self-exciting spatio-temporal point process is one
whose conditional intensity is of the form

Q) At H)=pls)+ Y gls —sit — 1),

i<t

where {si, s2,...,s,} denotes the observed sequence
of locations of events and {t1, 12, ..., s,} the observed
times of these events. Generally the triggering func-
tion g is nonnegative, and is often a kernel func-
tion or power law decay function; often, for simplic-
ity, it is taken to be separable in space and time, so
that g(s — s;,t — t;) = f(s — s;)h(t — t;), similar to
covariance functions in other spatio-temporal models
(Cressie and Wikle, 2011, Section 6.1). Sometimes a
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FIG. 1. At top, a hypothetical observed self-exciting point process of events from t = 0 to t = 10. Below, the separation of that process
into a background process and two generations of offspring processes. The arrows indicate the cluster relationships of which events were
triggered by which preceding events; solid circles are background events, and open circles and squares are triggered events. At bottom, the
combined process with generation indicated by shapes and shading. This cluster structure is not directly observed, though it may be inferred

with the methods of Section 3.2.
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general nonparametric form is used, as in the model
described in Section 3.2.3.

For ease of notation, the explicit conditioning on the
past history H; will be omitted for the rest of this re-
view, and should be read as implied for all self-exciting
conditional intensities.

As with Hawkes processes, spatio-temporal self-
exciting processes can be treated as Poisson cluster
processes, with the mean number of offspring

3) m =/X/0Tg(s,t)dtds.

The triggering function g, centered at the triggering
event, is the intensity function for the offspring pro-
cess. Properly normalized, it induces a probability dis-
tribution for the location and times of the offspring
events. The cluster process representation will prove
crucial to the efficient estimation and simulation of
self-exciting processes, and the estimation of the clus-
ter structure of the process will be the focus of Sec-
tion 3.2.

To illustrate the cluster process behavior of spatio-
temporal self-exciting processes, Figure 2 compares
a simulated realization of a spatio-temporal inhomo-
geneous Poisson process against a self-exciting pro-
cess using the same Poisson process realization as its
background process. The self-exciting process, simu-
lated using a Gaussian triggering function with a short
bandwidth, shows clusters (of expected total cluster
size 4) emerging from the Poisson process. The sim-
ulation was performed using Algorithm 5, to be dis-
cussed in Section 3.3, which directly uses the cluster
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process representation to make simulation more effi-
cient.

2.3 Marks

Point processes may be marked if features of events
beyond their time or location are also observed (Daley
and Vere-Jones, 2003, Section 6.4). For example, if
earthquakes are treated as a spatiotemporal point pro-
cess of epicenter locations and times, the magnitude
of each earthquake is an additional observed variable
which is an important part of the process: the num-
ber and distribution of aftershocks may depend upon
it. A marked point process is hence a point process
of events {(s;, t;, k;)}, where 5; € X C RY, 1 € [0, T),
and «; € KC, where K is the mark space (e.g., the space
of earthquake magnitudes). A special case is the mul-
tivariate point process, in which the mark space is a
finite set {1,...,m} for a finite integer m. Often the
mark in a multivariate point process indicates the type
of each event, such as the type of crime reported.

Marks can have several useful properties. A process
has independent marks if, given the locations and times
{(s;i, t;)} of events, the marks are mutually indepen-
dent of each other, and the distribution of «; depends
only on (s;, t;). Separately, a process has unpredictable
marks if k; is independent of all locations and marks
{(sj,tj,k;)} of previous events (¢; < ;).

A marked point process has a ground process, the
point process of event locations and times without their
corresponding marks. Using the ground process condi-
tional intensity A (s, ), we can write the marked point

Self-exciting process
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FI1G. 2. At left, a realization of an inhomogeneous Poisson process, in which the intensity is higher inside a central square and lower
outside. At right, a self-exciting process with average total cluster size of 4, using the inhomogeneous Poisson process as the background
process. Excited events are shown in blue. The cluster structure of the process is clearly visible, with clumps emerging from the self-excitation.
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process’s conditional intensity function as
4) A(s, 1K) =Ag(s, ) fk|s,1),

where f(k | s,t) is the conditional density of the mark
at time ¢ and location s given the history of the pro-
cess up to ¢. In general, the ground process may de-
pend on the past history of marks as well as the past
history of event locations and times. For simplicity of
notation, the following sections will largely consider
point processes without marks, except where noted,
but most methods apply to marked and unmarked pro-
cesses alike.

2.4 Log-Likelihood

The likelihood function for a particular parametric
conditional intensity model is not immediately obvi-
ous: given the potentially complex dependence caused
by self-excitation, even the distribution of the total
number of events observed in a time interval is difficult
to obtain, and the spatial distributions of this varying
number of events must also be accounted for. Instead,
for a realization of n points from a point process, we
start with its Janossy density (Daley and Vere-Jones,
2003, Section 5.3). For a temporal point process, where
a realization is the set of event times {t{, >, ..., ,;} In
a set T, the Janossy density is defined by the Janossy
measure J,,,

Jn(Ap X - X Ay) :n!pnnzym(Al X e X Ay),

where the total number of events is n, p, is the proba-
bility of a realization of the process containing exactly
n events, (Ay,...,A,) is a partition of T where A;
represents possible times for event i, and ™) is
a symmetric probability measure determining the joint
distribution of the times of events in the process, given
there are n total events. The Janossy measure is not a
probability measure: it represents the sum of the proba-
bilities of all n! permutations of n points. It is nonethe-
less useful, as its density j,(?1, ..., t,)df; - - -df, hasan
intuitive interpretation as the probability that there are
exactly n events in the process, one in each of the n
infinitesimal intervals (¢;, t; + d#;).

This interpretation connects the Janossy density to
the likelihood function, which can be written as (Daley
and Vere-Jones, 2003, Definition 7.1.1I)

&) Lr(t,..

for a process on a bounded Borel set of times T'; for
simplicity in the rest of this section, we’ll consider

times in the interval [0, T'). Here j,(t1,...,t, | T) de-
notes the local Janossy density, interpreted as the prob-
ability that there are exactly n events in the process be-
fore time 7', one in each of the infinitesimal intervals.

The likelihood can be rewritten in terms of the
conditional intensity function, which is usually eas-
ier to define than the Janossy density, by connec-
tion with survival and hazard functions. Consider the
conditional survivor functions Sg(t | t1,...,%—1) =
Pr(ty >t | t1,...,t%—1). Using these functions and the
conditional probability densities pi(f | t1, ..., tx—1) of
event times, we can write the Janossy density recur-
sively as

(6) =p1(t)p2t2 1) - pu(ta | 11, ..
“Spt1(T | 21,0, tn).

Additionally, we may define the hazard functions

. tn—l)

pe(tlty, ... tk—1)
hi(t ]t ... ty) =
) Skt ..., tk=1)
_ dlog S |t1, ... k1)
dt '

The hazard function has a natural interpretation as the
conditional instantaneous event rate—which means the
conditional intensity A(¢) can be written directly in
terms of the hazard functions:

hi(),
A =
®) {hk(t |11, ..

0<t<ty,

G t—1), 1 <t <t k>2.

This allows us to write the likelihood from equa-
tion (5) in terms of the conditional intensity function
instead of the Janossy density. Observe that from equa-
tion (7) we may write

Skt ..., t=1)

t
=exp<— hk(u|l‘1,...,tk_1)du>.
Tk—1

Substituting equation (7) into equation (6), replacing
the hazard function with the conditional intensity, and
combining terms leads to the likelihood, for a complete
parameter vector ®, of (Daley and Vere-Jones, 2003,
Proposition 7.2.1II)

L(®) = []‘[ x(t,-)} exp(— /OT,\(z)dz>.

i=1

By treating spatial locations as marks, we may extend
this argument to spatio-temporal processes and obtain
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the log-likelihood (Daley and Vere-Jones, 2003, Propo-
sition 7.3.1II)

n T
(8) Z(@):;log(k(si,ti))—/o /)(A(s,t)dsdt,

where X is the spatial domain of the observations. For
spatio-temporal marked point processes with intensity
defined as in equation (4), the log-likelihood is writ-
ten in terms of the ground process, and has an ex-
tra mark term (Daley and Vere-Jones, 2003, Proposi-
tion 7.3.1I1)

€(®) = > log(re(si, 1)) + Y log(f(m; | si, 1))

i=1 i=1

T
—f / Ag(s,t)dsdr.
0 X

In unmarked processes, the first term in equation (8)
is easy to calculate, assuming the conditional inten-
sity is straightforward, but the second term can re-
quire computationally expensive numerical integration
methods.

There are several approaches to evaluate this inte-
gral. The spatial domain X can be arbitrary—for ex-
ample, a polygon defining the boundaries of a city—
so Meyer, Elias and Hohle (2012) (see Section 4.3)
used two-dimensional numeric integration via cuba-
ture, as part of a numerical maximization routine. This
requires an expensive numeric integration at every step
of the numerical maximization, making the procedure
unwieldy.

Schoenberg (2013) observed that, for some condi-
tional intensities, it may be much easier to analytically
integrate over R? instead of an arbitrary X. Hence, the
approximation

T 00
/ /k(s,t)dsdtff / A(s,t)dsdr
0 X 0 R2

may reduce the integral to a form which may be eval-
uated directly. The approximation is exact when the
effect of self-excitation is contained entirely within
X and before t+ = T, and overestimates otherwise;
because overestimation decreases the calculated log-
likelihood, Schoenberg argued that likelihood maxi-
mization will avoid parameter values where overes-
timation is large. Lippiello et al. (2014) argued that
the temporal approximation biases parameter estimates
more than the spatial one, and advocated only ap-
proximating X by R?. This approximation was used
by Mohler (2014), discussed in Section 4.2. Lippiello
et al. (2014) also proposed a more accurate spatial ap-
proximation method based on a transformation of the
triggering function to polar coordinates.

3. ESTIMATION AND INFERENCE

Suppose now we have observed a realization of
a self-exciting point process, with event locations
{s1,82,...,5,} and times {¢{,t,...,%,} over a spa-
tial region X and temporal window [0, T)). We have a
model for the conditional intensity function and would
like to be able to estimate its parameters, perform in-
ference, and simulate new data if needed. This section
discusses common approaches to these problems in the
literature, focusing largely on maximum likelihood es-
timation, though with a brief discussion of Bayesian
approaches in Section 3.5.

Fitting conditional intensity functions is not the only
way to approach spatio-temporal point processes; there
is also extensive literature which primarily uses de-
scriptive statistics, such as first and second order mo-
ments of the process. I will not delve into this literature
here, as it is less useful for understanding self-exciting
processes; nonetheless, Vere-Jones (2009) gives a brief
review, and more thorough treatments are available
from Gonzilez et al. (2016) and Diggle (2014).

3.1 Maximum Likelihood

Self-exciting point process models are most com-
monly fit using maximum likelihood. This is usually
impossible to perform analytically: the form of the
log-likelihood in equation (8) involves a sum of log-
arithms of conditional intensities, which themselves
involve sums over previous points, making analyti-
cal maximization intractable. Numerical evaluation of
the intensity takes O (n?) time, and the log-likelihood
can be nearly flat in large regions of the parameter
space, causing problems for numerical maximization
algorithms and making convergence extremely slow;
in some examples explored by Veen and Schoenberg
(2008), numerical maximization may fail to converge
altogether. Nonetheless, for small datasets where the
log-likelihood is computationally tractable to evaluate,
numerical maximization is often used.

Alternately, Veen and Schoenberg (2008) showed the
likelihood can be maximized with the expectation max-
imization (EM) algorithm (Dempster, Laird and Rubin,
1977, McLachlan and Krishnan, 2008) by introducing
a latent quantity u; for each event i, which indicates
whether the event came from the background (u#; = 0)
or was triggered by a previous event j (u; = j). This
follows naturally from the cluster process representa-
tion discussed in Sections 2.1 and 2.2: if u; = 0, event
i is a cluster center, and otherwise it is the offspring
(directly or indirectly) of a cluster center.
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Veen and Schoenberg (2008) derived the complete-
data log-likelihood for a specific earthquake clustering
model. More generally, consider a model of the form
given in equation (2). If the branching structure u; is
assumed to be known, the complete-data log-likelihood
for a parameter vector ® can be written as

€:(0) =) T(u; = 0)log(u(s:))

i=l

+ ) L = j)log(glsi —sj, i — 1)

i=1j=1

T
—f / A(s,t)dsdz,
0 JX

where I(-) is the indicator function, which is one when
its argument is true and zero otherwise. The branching
structure dramatically simplifies the log-likelihood, as
each event’s intensity comes only from its trigger (the
background or a previous event); this is analogous to
the common EM approach to mixture models, where
the latent variables indicate the underlying distribution
from which each point came.

To complete the E step, we take the expectation of
£.(®). This requires estimating the triggering proba-
bilities Pr(u; = j) = E[l(u; = j)] for all i, j, based on
the current parameter values © for this iteration. We
can calculate these probabilities as

g(si —sj,ti — 1))

. , <t
Q) Pr(u;=j)= A(si, 1)
0, tj > 1,
10) Pr(u; =0) =1 i_lP =y )
(10) Pr(u; =0) = _Z (ul_])_)\.(sl',ti)-

j=1
This leads to the expected complete-data log-likelihood

E[£c(©)] = > Pr(u; = 0)log(u(s))
i=1

+ D) Pr(u = j)log(g(si —sj,ti — 1))

i=1j=1

T
—/ f A(s, t)ds dr,
0 X

which is much easier to analytically or numerically
maximize with respect to each parameter in the M step.
Once new parameter estimates are found, the proce-
dure returns to the E step, estimating new triggering
probabilities, and repeats until the log-likelihood con-
verges, or until the estimated parameter values change
by less than some pre-specified tolerance.

The EM algorithm has several advantages over
other numerical maximization methods. Introducing
the branching structure avoids the typical numerical
issues encountered by other maximization algorithms,
making the maximization at each iteration much eas-
ier, and the triggering probabilities also have a dual use
in stochastic declustering algorithms, discussed in the
next section.

One important warning must be kept in mind, how-
ever. If we have observed only data in the region X
and time interval [0, T'), but the underlying process ex-
tends outside this region and time, our parameter es-
timates will be biased by boundary effects (Zhuang,
Ogata and Vere-Jones, 2004). Unobserved events just
outside X or before t = 0 can produce observed off-
spring which may be incorrectly attributed to the back-
ground process, and observed events near the bound-
ary can produce offspring outside it, leading estimates
of the mean number of offspring m [see equation (3)]
to be biased downward. Boundary effects can also bias
the estimated intensity A(s, t) in ways analogous to the
bias experienced in kernel density estimation (Cowling
and Hall, 1996), but these effects are not well charac-
terized for common self-exciting models.

3.2 Stochastic Declustering

For some types of self-exciting point processes, the
background event rate w(s) is fit nonparametrically
from the observed data, for example, by kernel den-
sity estimation or using splines (Ogata and Katsura,
1988). This could be fit by maximum likelihood—
Mohler (2014) fit the background as a weighted ker-
nel density via maximum likelihood, for example—but
in some cases, we would like to estimate w(s) using
events from the background process only, and not using
events which were triggered by those events. We may
also want to analyze the background process intensity
separately from the triggered events, since the back-
ground process may have an important physical inter-
pretation. This requires a procedure which can separate
background events from triggered events, as illustrated
in Figure 1: stochastic declustering.

3.2.1 Model-based stochastic declustering. This
version of stochastic declustering, introduced by
Zhuang, Ogata and Vere-Jones (2002), assumes that
the triggering function g has a parametric form, but
that the background w(s) should be estimated non-
parametrically from only background events. Estimat-
ing the background requires determining whether each
event was triggered by the background, but to do so
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requires g, so the procedure is iterative, starting with
initial parameter values and alternately updating the
background estimate and g until convergence.

Consider the total spatial intensity function, defined
as (Zhuang, Ogata and Vere-Jones, 2002)

1 T
11 = lim — A
an - me=tim = [Caen,

where T is the length of the observation period. The
function m(s) does not require declustering to esti-
mate, since it sums over all events, including triggered
events; by replacing the limit in equation (11) with
a finite-data approximation and substituting in equa-
tion (2), we obtain

1 T
ml(S)“?/O w(s)+ Y gls —si,t —1;)dr

iiti<t

1 T
=,u(s)+?/0 Z g(s —s;,t —t;)de.

iti<t

We hence obtain the relation

1 T
(12) p@xme - 3 [ g6 s -
i<t 0
We can now use a suitable nonparametric technique,
such as kernel density estimation, to form 7 (s):

1 n
i (s) = = 3 k(s =),
i=I

where k is a kernel function. It may also be desirable
to estimate the second term on the right-hand side of
equation (12), denoted y (s), the same way. To do so,
we use the same latent quantity u; defined and esti-
mated in Section 3.1. We can estimate the cluster pro-
cess by, for example, a weighted kernel density esti-
mate, using

1 n
y(s)= T > Pr(u; #0)k(s — si).
i=1

This leads to the estimator
a(s) =my(s) —y(s)

(13) 1y
== > (1 = Pr(u; #0))k(s — s7).
i=1
We now need to iteratively estimate parameters of
the triggering function g. Provided these can be found
by maximum likelihood, Zhuang, Ogata and Vere-
Jones (2002) suggested the following algorithm:

ALGORITHM 1. Let fi(s) = 1 initially.

1. Using maximum likelihood (see Section 3.1), fit the
parameters of the conditional intensity function

AMs. ) =Q(s)+ D gls —sit —1;).

i<t

2. Calculate Pr(u; # 0) for all i using the parameters
found in step 1 and equation (10).

3. Using the new branching probabilities, form a new
[A*(s) using equation (13).

4. If max; |1(s) — 1*(s)| > ¢, for a pre-chosen toler-
ance ¢ > 0, return to step 1. Otherwise, terminate
the algorithm.

We can now perform stochastic declustering by thin-
ning the process. With the final estimated fi(s), we re-
calculate Pr(u; # 0) and keep each event with proba-
bility 1 — Pr(u; # 0); the rest of the events are con-
sidered triggered events and deleted. We are left with
those identified as background events.

In the original implementation of this algorithm,
Zhuang, Ogata and Vere-Jones (2002) used an adaptive
kernel function k in equation (13) whose bandwidth
was chosen separately for each event, rather than being
uniform for the whole dataset. After choosing an inte-
ger n, between 10 and 100, for each event they found
the smallest disk centered at that event which includes
at least n,, other events (forced to be larger than some
small value €, chosen on the order of the observation
error in locations). The radius of this disk was used as
the bandwidth for the kernel at each event. This method
was chosen because, in clustered datasets, any single
bandwidth oversmooths in some areas and is too noisy
in others. A method to estimate kernel parameters from
the data will be introduced in Section 3.2.2.

Zhuang, Ogata and Vere-Jones (2002) also adapted
the declustering algorithm to produce a “family tree”:
a tree connecting background events to the events they
trigger, and so on from each event to those it triggered.
The algorithm considers each pair of events and deter-
mines whether one should be considered the ancestor
of the other:

ALGORITHM 2. Begin with the final estimated
i (s) from Algorithm 1.

1. For each pair of events i, j (with #; > ;), calculate
Pr(u; = j) and Pr(u; = 0).

2. Seti=1.

3. Generate a uniform random variate R; ~
Uniform(0, 1).

4. If R; < Pr(u; = 0), consider event { to be a back-
ground event.
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5. Otherwise, select the smallest J such that R; <
Pr(u; = 0) + ¥ 7_; Pr(u; = j). Consider the ith
event to be a descendant of the Jth event.

6. When i = N, the total number of events, terminate;
otherwise, set i =i + 1 and return to step 3.

Though the thinning algorithm and family tree con-
struction are stochastic and hence do not produce
unique declusterings, Zhuang, Ogata and Vere-Jones
(2002) argue this is an advantage, as uncertainty in
declustering can be revealed by running the decluster-
ing process repeatedly and examining whether features
are consistent across declustered processes. These
methods have been used to answer important scientific
questions in seismology, discussed in Section 4.1.

3.2.2 Forward likelihood-based predictive
approach. In a semiparametric model, where the back-
ground . (s) is estimated nonparametrically from back-
ground events, the nonparametric estimator (such as a
kernel smoother) may have tuning parameters which
need to be adapted to the data. The model-based
stochastic declustering procedure discussed above uses
an adaptive kernel in w(s), but we may wish to use a
standard kernel density estimator with bandwidth es-
timated from the data. However, if we follow Algo-
rithm 1, adjusting the bandwidth with maximum likeli-
hood at each iteration, the bandwidth would go to zero,
placing a point mass at each event.

To avoid this problem, Chiodi and Adelfio (2011)
introduced the Forward Likelihood-based Predictive
approach (FLP). Rather than directly maximizing the
likelihood, consider increments in the log-likelihood,
using the first k observations to predict the (k + 1)th:

Sk k+1(O | Hy) = log A(sk+1, tk+1 | O, Hyy)

Iiy1
—/ / As, | ©,Hy)dsdt,
1 X

where the past history H,, explicitly indicates that the
intensity experienced by point k + 1 depends only on
the first k observations [i.e., the estimate of w(s) only
includes the first k£ points]. A parameter estimate O is
formed by numerically maximizing the sum

n—1
FLP(O) = ) 8ik+1(© | Hy),

k=k
where k; = |n/2]. Adelfio and Chiodi (2015a) and
Adelfio and Chiodi (2015b) developed the FLP method
into a semiparametric method following an alternated
estimation procedure similar to Algorithm 1. The pro-
cedure splits the model parameters into the nonpara-
metric smoothing parameters > and the triggering

function parameters ©, and iteratively fits them in the
following steps:

ALGORITHM 3. Begin with a default estimate for
3, for example by Silverman’s rule for kernel band-
widths (Silverman, 1986). Use this to estimate (s;)
for each event ;.

1. Using the estimated values of w(s;) and holding X
fixed, estimate the triggering function parameters ®
via maximum likelihood.

2. Calculate Pr(u; = 0) for each event i using the cur-
rent parameter estimates.

3. Estimate the smoothing parameters by maximizing
FLP(3), holding © fixed.

4. Calculate new estimates of u(s;) for each event i,
using a weighted estimator with the weights calcu-
lated in step 2.

5. Check for convergence in the estimates of X and ®
and either terminate or return to step 1.

Adelfio and Chiodi (2015b) applied this method to
a large catalog of earthquakes in Italy, using the earth-
quake models to be discussed in Section 4.1, finding
improved performance over a version of the model
where smoothing parameters were fixed solely with
Silverman’s rule.

3.2.3 Model-independent stochastic declustering.
Marsan and Lengliné (2008) proposed a model-
independent declustering algorithm (MISD) for earth-
quakes which removed the need for a parametric trig-
gering function g(s, t), instead estimating the shape
of g(s,t) from the data. They assumed a conventional
conditional intensity with constant background rate X,

)"(svt):)“o—i_ Z g(s_sl"t_ti)?

i<t

but g(s, ) was simply assumed to be piecewise con-
stant in space and time, with the constant for each
spatial and temporal interval estimated from the data.
Marsan and Lengliné (2010) showed their method
can be considered an EM algorithm, following the
same steps as in Section 3.1: estimate the probabili-
ties Pr(u; = j) in the E step and then maximize over
parameters of g(s,t) and Ag in the M step, eventu-
ally leading to convergence and final estimates of the
branching probabilities.

Fox, Schoenberg and Gordon (2016) extended this
method to the case where the background Ag is not con-
stant in space by assuming a piecewise constant back-
ground function w(s) or by using a kernel density es-
timate of the background, then quantified uncertainty
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in the background and in g(s,t) by using a version
of the parametric bootstrap method to be discussed in
Section 3.4. This can be considered a general nonpara-
metric approach to spatio-temporal point process mod-
eling as well as a declustering method, since with con-
fidence intervals for the nonparametric triggering func-
tion, useful inference can be drawn for the estimated
triggering function’s shape.

3.3 Simulation

It is often useful to simulate data from a chosen
model. For temporal point processes, a range of simu-
lation methods are described by Daley and Vere-Jones
(2003), Section 7.5. Several spatio-temporal methods
are based on a thinning procedure which first generates
a large quantity of events, then thins them according
to their conditional intensity, starting at the first event
and working onward so history dependence can be
taken into account. The basic method was introduced
for nonhomogeneous Poisson processes by Lewis and
Shedler (1979).

Ogata (1998) proposed a two-stage algorithm for
general self-exciting processes which requires thinning
fewer events and is hence more efficient. Events are
generated sequentially, and the time of each event is
determined before its location. To generate times, we
require a version of the conditional intensity which is
only a function of time, having integrated out space:

Ax(D=vo+ Y v,

Jitj<t
vo = / u(s)ds.
X

vj(t)z/xg(s,t)ds.

This allows us to simulate times of events before simu-
lating their locations. The algorithm below, though ap-
parently convoluted, amounts to drawing the waiting
time until the next event from an exponential distribu-
tion, drawing its location according to the distribution
induced by g, and repeating, rejecting (thinning) some
proposed times proportional to their intensities A x:

ALGORITHM 4. Start with a = b =c¢ =0 and

i=1.

1. Set s, = 0 and generate U, ~ Uniform(0, 1). Let
Ac=voand u, = —log(Up)/Ae.

2. If u, > T, stop. Otherwise, let t; = u,, let J =0,
and skip to step 7.

3.Let b=b+ 1 and a = a + 1. Generate U ~
Uniform(0, 1) and let u, = —log(Up)/A..

4. Let s, =s54—1 +uy. If s, > T, stop; otherwise let
b =b + 1 and generate U, ~ Uniform(0, 1).

5. If Up > Ax(sq)/A¢, set c =c+ 1 and let A, =
Ax (sq), then go to step 3.

6. Let t; = 54, set b = b + 1, generate U, ~
Uniform(0, 1), and find the smallest J such that
Y i_ovj(ti) > Uphx (ti).

7. If J =0, then generate s € X from the non-
homogeneous Poisson intensity w(s) and go to
step 10.

8. Otherwise, set b = b + 1, then set s; by drawing
from the normalized spatial distribution of g cen-
tered at 5.

9. If s; is not in X, return to step 3.

10. Otherwise, seti =i + 1 and return to step 3.

This can be computationally expensive. The inten-
sity Ax must be evaluated at each candidate point,
involving a large sum, and the thinning in step 5
means multiple candidate times will often have to be
generated. Another method, developed for earthquake
models, directly uses the cluster structure of the self-
exciting process, eliminating the need for thinning
or repeated evaluation of A(s,?) (Zhuang, Ogata and
Vere-Jones, 2004).

ALGORITHM 5. Begin with a fully specified con-
ditional intensity A(s, ).

1. Generate events from the background process using
the intensity u(s), by using a simulation method
for nonhomogeneous stationary Poisson processes
(e.g., Lewis and Shedler, 1979). Call this catalog of
events GO,

2. Let!/ =0.

3. For each event i in G, simulate its N off-
spring, where N @) ~ Poisson(m) (with m defined
as in equation (3)), and the offspring’s location and
time are generated from the triggering function g,
normalized as a probability density. Call these off-
spring Oi([).

4. Let GUtD = Uiego Oi(l).

5. If G¥ is not empty, set / = + 1 and return to step
3. Otherwise, return Ul,':() G as the final set of
simulated events.

This algorithm has been widely used in the seismo-
logical literature for studies of simulated earthquake
catalogs. However, both methods suffer from the same
edge effects as discussed in Section 3.1: if the back-
ground is simulated over a time interval [0, T'), the
offspring of events occurring just before r = 0 are
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not accounted for. Similarly, if events occurred just
outside the spatial region X, they can have offspring
inside X, which will not be simulated. This can be
avoided by simulating over a larger space—time win-
dow and then only selecting simulated events inside X
and [0, T'). Mgller and Rasmussen (2005) developed a
perfect simulation algorithm for temporal Hawkes pro-
cesses which avoids edge effects, but its extension to
spatio-temporal processes remains to be developed.

3.4 Asymptotic Normality and Inference

Ogata (1978) demonstrated asymptotic normality of
maximum likelihood parameter estimates for tempo-
ral point processes, and showed the covariance con-
verges to the inverse of the expected Fisher infor-
mation matrix, suggesting an estimator based on the
Hessian of the log-likelihood at the maximum likeli-
hood estimate. This estimator has been frequently used
for spatio-temporal models in seismology; however,
Wang, Schoenberg and Jackson (2010), comparing it
with sampling distributions found by repeated simula-
tion, found that standard errors based on the Hessian
can be heavily biased for small to moderate observation
period lengths, suggesting the finite-sample behavior is
poor.

Rathbun (1996) later demonstrated that for spatio-
temporal point processes, maximum likelihood esti-
mates of model parameters are consistent and asymp-
totically normal as the observation time 7 — oo, un-
der regularity conditions on the form of the conditional
intensity function A(s, ¢). An estimator for the asymp-
totic covariance of the estimated parameters is

—1
A " OA(si,
(14) S Z (si t;) ,
= AGsin )
where A(s;, t;) is a matrix-valued function whose en-
tries are

Ai(s, A j(s,1)
A(s, 1)

and A, (s, ) denotes the partial derivative of A (s, t) with
respect to the ith parameter. From > we can derive
Wald tests of parameters of interest, and by inverting
the tests we can obtain confidence intervals for any pa-
rameter.

Rather than relying on asymptotic normality, an-
other approach is the parametric bootstrap, which has
been used for temporal point process models in neuro-
science (Sarma et al., 2011). The parametric bootstrap,
though computationally intensive, is conceptually sim-
ple:

Ajj(s, 1) =

A

ALGORITHM 6. Using the parameter values ©®
from a previously fitted model, and starting with i = 1:

1. Using a simulation algorithm from Section 3.3, sim-
ulate a new dataset in the same spatio-temporal re-
gion.

2. Fit the same model to this new data, obtaining new
parameter values OO,

3. Repeat steps 1 and 2 withi =i + 1, up to some pre-
specified number of simulations B (e.g., 1000).

(Alternately, the algorithm can be adaptive, by
checking the confidence intervals after every b steps
and stopping when they seem to have converged.)

4. Calculate bootstrap 95% confidence intervals for
each parameter by using the 2.5% and 97.5% quan-
tiles of the estimated O,

This is straightforward to implement, relies on min-
imal assumptions, and is asymptotically consistent in
some circumstances. However, just as asymptotically
normal standard errors may be biased for finite sample
sizes, the bootstrap has no performance guarantees on
small samples. Wang, Schoenberg and Jackson (2010)
tested neither the parametric bootstrap nor the estima-
tor of Rathbun (1996) in their simulations, so no direct
comparison is possible here, and those intending to use
the bootstrap should test its performance in simulation.

It is sometimes desirable to estimate only a subset
of the parameters in a model, either because full es-
timation is intractable or because some covariates are
unknown. Dropping terms from the conditional inten-
sity results in a partial likelihood, and parameter es-
timates obtained by maximizing the partial likelihood
may differ from those obtained from the complete like-
lihood. Schoenberg (2016) explored the circumstances
under which the parameter estimates are not substan-
tially different, finding that partial likelihood estimates
are identical under assumptions about the separability
of the omitted parameters, and are still consistent in
more general additive models under assumptions that
the omitted parameters have relatively small effects on
the intensity. In either case, the maximum partial like-
lihood estimates still have the asymptotic normality
properties discussed above.

3.5 Bayesian Approaches

Rasmussen (2013) introduced two methods for
Bayesian estimation for self-exciting temporal point
processes: direct Markov Chain Monte Carlo (MCMC)
on the likelihood, using Metropolis updates within a
Gibbs sampler, and a method based on the cluster pro-
cess structure of the process. Loeffler and Flaxman
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(2016) recently adapted MCMC to fit a version of the
self-exciting crime model discussed in Section 4.2, us-
ing the Stan modeling language (Stan Development
Team, 2016) and Hamiltonian Monte Carlo to obtain
samples from the posteriors of the parameters. Ross
(2016), however, working with the seismological mod-
els discussed in Section 4.1, argued that direct Monte
Carlo methods are impractical: a sampling method in-
volving repeated rejection requires evaluating the like-
lihood many times, an O (n?) operation, and the strong
correlation of some parameters can make convergence
difficult.

Instead, building on the cluster process method sug-
gested by Rasmussen (2013), Ross (2016) proposed
taking advantage of the same latent variable formula-
tion introduced for maximum likelihood in Section 3.1.
If the latent u;s are known for all i, events in the pro-
cess can be partitioned into N + 1 sets Sp, ..
where

'7SN’

Sij={tilui=j}, 0=j<N.

Events in each set §; can be treated as coming from a
single inhomogeneous Poisson process, with intensity
proportional to the triggering function g [or to w(s),
for Sp]. This allows the log-likelihood to be partitioned,
reducing dependence between parameters and dramati-
cally improving sampling performance. The algorithm
now involves sampling u; [using the probabilities de-
fined in Egs. (9)—-(10)], then using these to sample the
other parameters, in a procedure very similar to the ex-
pectation maximization algorithm for these models.

3.6 Model Selection and Diagnostics

In applications, model selection is usually performed
using the Akaike information criterion (AIC) or related
criteria like the Bayesian information criterion (BIC)
and the Hannan—Quinn criterion; Chen et al. (2017)
compared the performance of these methods in select-
ing the correct model in a range of settings and sam-
ple sizes, finding AIC more effective in small samples
and less in larger samples. A variety of tests and resid-
ual plots are available for evaluating the fit of spatio-
temporal point process models. Bray and Schoenberg
(2013) provide a comprehensive review focusing on
earthquake models; I will give a brief summary here.

First, we observe that any process characterized
by its conditional intensity A(s,#) may be thinned to
obtain a homogeneous Poisson process (Schoenberg,
2003), allowing examination of the fit of the spatial
component of the model. We define b = inf, ; A(s, t),

and for each event i in the observed process, calculate
the quantity
b

A(sis i)
Retain event i with probability p;. If this is done with
an estimated intensity )A»(s, t) from the chosen model,
the thinned process (now ignoring time) will be Pois-
son with rate b, and can be examined for homogene-
ity, for example, with the K-function (Ripley, 1977),
which calculates the proportion of events per unit area
which are within a given distance. This will detect if
the thinned process still has clustering not accounted
for by the model.

If b is small, the thinned process will contain very
few events, making the test uninformative. Clements,
Schoenberg and Veen (2012) propose to solve this
problem with “super-thinning,” which superimposes a
simulated Poisson process. We choose a rate k for the
super-thinned process, such that b < k < sup; , A(s, 1),
and thin with probabilities

Di

k 1}
Asit) )
We add to the thinned process a simulated inhomoge-
neous Poisson process with rate max{k — A(s, ), 0}.
The sum process is, if the estimated model is correct,
homogeneous with rate k.

Graphical diagnostics are also available. For purely
spatial point processes, Baddeley et al. (2005) devel-
oped a range of residual diagnostic tools to display
differences between the fitted model and the data,
demonstrating further properties of these residuals in
Baddeley, Mgller and Pakes (2007) and Baddeley,
Rubak and Mgller (2011). Zhuang (2006) showed
these tools could be extended directly to
spatio-temporal point processes, producing residual
maps which display the difference between the pre-
dicted number of events and the actual number, over
grid cells or some other division of space. Bray et al.
(2014) argued that a grid is a poor choice: if grid cells
are small, the expected number of events per cell is low
and the distribution of residuals is skewed, but if grid
cells are large, over- and under-prediction within a sin-
gle cell can cancel out. Instead, they proposed using
the Voronoi tesselation of space: for each event loca-
tion s;, the corresponding Voronoi cell consists of all
points which are closer to s; than to any other event.
This generates a set of convex polygons. By integrat-
ing the conditional intensity over a reasonable unit of
time and over each Voronoi cell, we obtain a map of ex-
pected numbers of events, which we can subtract from

pi = min{
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FI1G. 3. A Voronoi residual map of the self-exciting point process
shown in Figure 2. The model was fit assuming a constant back-
ground intensity and does not account for the inhomogeneous rate,
leading to positive residuals in the center area and negative resid-
uals outside. Residual values are standardized according to an ap-
proximate distribution given by Bray et al. (2014).

the true number in each cell (which is 1 by definition).
This produces a map which can be visually examined
for defects in prediction.

As an example, Figure 3 is a Voronoi residual map
of the self-exciting point process previously shown in
Figure 2, produced following the procedure suggested
by Bray et al. (2014). A model was fit to the simu-
lated point process data which does not account for
the inhomogeneous background process, instead as-
suming a constant background rate, and a spatial pat-
tern in the residuals is apparent, with positive resid-
uals (more events than predicted) in areas where the
background rate is higher and negative residuals out-
side those areas.

4. APPLICATIONS

This section will review four major applications
of self-exciting point processes: earthquake models,
crime forecasting, epidemic infection forecasting, and
events on networks. This is by no means an exhaus-
tive list—self-exciting point process models have been
applied to problems as disparate as wildfire occur-
rence (Peng, Schoenberg and Woods, 2005) and civil-
ian deaths in Iraq (Lewis et al., 2011). The selected ap-
plications illustrate the features that make self-exciting
point processes valuable: parameters of the triggering
function g have important physical interpretations and
can be used to test scientific hypotheses about the event

triggering process, while the background u flexibly in-
corporates spatial and temporal covariates whose ef-
fects can be estimated. Purely descriptive methods, or
methods such as log-Gaussian Cox processes, do not
permit the same inference about the event triggering
process.

4.1 Earthquake Aftershock Sequence Models

After a large earthquake, a sequence of smaller after-
shocks is typically observed in the days and weeks af-
terwards, usually near the epicenter of the main shock
(Freed, 2005). These tremors are triggered by the seis-
mic disturbance of the main shock, and the distribu-
tion of their magnitudes and arrival times has proven
to be relatively consistent, allowing the development
of models for their prediction and analysis.

Sequences of earthquakes and aftershocks show rich
behavior, such as spatial and temporal clustering, com-
plex spatial dependence, and gradual shifts in over-
all seismicity. Self-exciting point processes are a nat-
ural choice to model this behavior, as they can directly
capture spatio-temporal aftershock triggering behavior
and can incorporate temporal trends and spatial inho-
mogeneity. The Epidemic-Type Aftershock Sequence
(ETAS) model, developed and expanded over several
decades, provides a flexible foundation for modeling
this behavior, and has been widely applied to earth-
quake sequences in Japan, California, and elsewhere.
A comprehensive review is provided by Ogata (1999).

The initial ETAS model was purely temporal, mod-
eling the rate of earthquakes at time ¢ as a superposi-
tion of a constant rate of background seismicity and of

aftershocks triggered by these background events:

K

A(r) = —_—.
D=+ 2 o

i<t

Here p is the background seismic activity rate and K;
is related to the recorded magnitude M; of earthquake
i by the relationship

K; = K()ea(Mi_MO),

where My is the minimum magnitude threshold for
earthquakes to be recorded in the dataset, and Ko, o,
and p are constants. Earthquake magnitudes are treated
as unpredictable marks. The functional form of the
triggering function, known as the modified Omori for-
mula, was determined empirically by studies of after-
shock sequences.

The temporal ETAS model was soon extended to
a spatio-temporal model of the form in equation (2).
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A variety of triggering functions g were used, ranging
from bivariate normal kernels to more complicated ex-
ponential decay functions and power laws; some trig-
gering functions allow the range of spatial influence to
depend on the earthquake magnitude. The inhomoge-
neous background w(s), which represents spatial dif-
ferences in fault structure and tectonic plate physics,
can be obtained by a simple kernel density estimate
(Musmeci and Vere-Jones, 1992) or by the stochastic
declustering methods discussed in Section 3.2.

Zhuang, Ogata and Vere-Jones (2004) demonstrated
that stochastic declustering can be used to test model
assumptions. They applied the ETAS model and
stochastic declustering to a catalog of 19,139 earth-
quakes compiled by the Japanese Meteorological
Agency, then used the declustered data to test assump-
tions typically used in modeling earthquakes; for ex-
ample, the distribution of earthquake magnitudes is as-
sumed to be the same for main shocks and aftershocks,
and both mainshocks and aftershocks trigger further af-
tershocks with the same spatial and temporal distribu-
tion. By identifying main shocks and aftershocks and
connecting them with their offspring, it was possible to
test each assumption, finding that some do not hold and
leading to a revised model (Ogata and Zhuang, 2006).

Further, by using AIC, different triggering functions
have been compared to improve understanding of the
underlying triggering mechanisms. For example, spa-
tial power law triggering functions were found more
effective than normal kernels, suggesting aftershocks
can be triggered at long ranges, and the rate of af-
tershock triggering depends on the magnitude of the
mainshock. This has led to improved earthquake fore-
casting algorithms based on the ETAS model (Zhuang,
2011). Harte (2012) explored the effects of model mis-
specification and boundary effects on model fits, find-
ing that a good fit for the background component is
also essential, as a poor background fit tends to bias
the model to consider background events as triggered
events instead, overestimating the rate of triggering and
the expected number of offspring events m.

Some research suggests that the parameters of the
ETAS model are not spatially homogeneous, and that
a more realistic model would allow the parameters to
vary in space. Ogata, Katsura and Tanemura (2003) in-
troduced a method which allows parameters to vary in
space, linearly interpolated between values defined at
the corners of a Delaunay triangulation of the space
defined by the earthquake locations. To ensure spa-
tial smoothness in these values, a smoothness penalty
term was added to the log-likelihood. Nandan et al.

(2017) took a similar approach, partitioning the region
X drawing g points uniformly at random within X,
obtaining the Voronoi tesselation, and allowing each
Voronoi cell to have a separate set of parameters. No
spatial smoothness was imposed, and the number of
points g was selected via BIC.

Similar concerns apply to temporal nonstationar-
ity. Kumazawa and Ogata (2014) considered two ap-
proaches to model changes in parameters over time:
a change-point model, in which parameters are fit-
ted separately to events before and after a suspected
change point, and a continuously varying model in
which several parameters, including the triggering rate,
were assumed to be first-order spline functions in time.
Temporal smoothness was enforced with a penalty
term in the log-likelihood, and AIC was used to com-
pare the fits in series of earthquakes recorded in Japan,
finding evidence of nonstationarity in an earthquake
swarm.

4.2 Crime Forecasting

After the development of ETAS models, Mohler
et al. (2011) drew an analogy between aftershock mod-
els and crime. Criminologists have demonstrated that
near-repeat victimization is common for certain types
of crime—for example, burglars often return to steal
from the same area repeatedly (Short et al., 2009,
Townsley, Homel and Chaseling, 2003, Bernasco,
Johnson and Ruiter, 2015), and some shootings may
cause retaliatory shootings soon after (Ratcliffe and
Rengert, 2008, Loeffler and Flaxman, 2016), typically
within just a few hundred meters. These can be treated
as “aftershocks” of the original crime.

Similarly, several criminological theories suggest the
background rate of crime can be expected to widely
vary by place. Routine activities theory (Cohen and
Felson, 1979) states that criminal acts require three
factors to occur together: likely offenders, suitable tar-
gets, and the absence of capable guardians. These fac-
tors vary widely in space depending on socioeconomic
factors, business and residential development, and the
activities of police or other guardians (e.g., vigilant
neighbors). Rational choice theory (Clarke and Cor-
nish, 1985) considers criminals making rational deci-
sions to commit offenses based on the risks and re-
wards they perceive—and the availability of low-risk
high-reward crime varies in space. Weisburd (2015),
using crime data across several cities, argued for a law
of crime concentration, stating that a large percentage
of crime occurs within just a few percent of street seg-
ments (lengths of road between two intersections) in a
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given city. Bolstering this, Gorr and Lee (2015) demon-
strated that a policing program based on both chronic
hot spots and temporary flare-ups can be more effective
than a program based on only one or the other.

These theories suggest a model of crime which as-
sumes the conditional intensity of crime occurrence
can be divided into a chronic background portion,
which may vary in space depending on a variety of
factors, and a self-exciting portion which accounts for
near-repeats and retaliations (Mohler et al., 2011):

A, ) =v(Ou(s) + Y gls —si 1 — 1),

i<t

where g is a triggering function and v(¢) reflects tem-
poral changes from weather, seasonality, and so on. Ini-
tially, v, i, and g were determined nonparametrically
following Algorithm 1, though weighted kernel den-
sity estimation was too expensive to perform on the full
dataset of 5376 residential burglaries, so they modified
the algorithm to subsample the dataset on each itera-
tion. An alternate approach, requiring no subsampling,
would be to use a fast approximate kernel density al-
gorithm to reduce the computational cost (Gray and
Moore, 2003).

Mohler (2014) introduced a parametric approach in-
tended to simplify model fitting and also incorporate
“leading indicators”—other crimes or events which
may be predictive of the crime of interest. In a model
forecasting serious violent crime, for example, minor
offenses like disorderly conduct and public drunken-
ness have proven useful in predictions, since they may
reflect behavior which will escalate into more serious
crime (Cohen, Gorr and Olligschlaeger, 2007). The in-
tensity is simplified to make the background constant
in time [v(¢) = 1], and to incorporate leading indica-
tors, the background is based on a weighted Gaussian
kernel density estimate, in which v(¢) = 1 and

n 2
o, s — sl
no=Y 5 ren(- )

i=1

where T is the length of the time window encompassed
by the dataset, s; and #; the location and time of crime i,
M; is a mark giving the type of crime i (where M; = 1
by convention for the crime being predicted), and « is a
vector of weights determining the contribution of each
event type to the background crime rate. The sum is
over all crimes, avoiding the additional computational
cost of stochastic declustering. The marks are treated
as unpredictable, and only the ground process is esti-
mated, not the conditional distribution of marks.

Similarly to wu(s), the triggering function g is a
Gaussian in space with an exponential decay in time:

gls,t,M) = 792
6 performs a similar function to «, weighting the con-
tribution of each type of crime to the conditional inten-
sity. The bandwidth parameters o> and n? determine
the spatial influence of a given crime type, while w de-
termines how quickly its effect decays in time. In prin-
ciple, different spatial and temporal decays could be
allowed for each type of crime, but this would dramat-
ically increase the number of parameters.

Mohler (2014) fit the parameters of this model on a
dataset of 78,852 violent crimes occurring in Chicago,
[linois between 2007 and 2012. The crime of inter-
est was homicide, using robberies, assaults, weapons
violations, batteries, and sexual assaults as leading in-
dicators. The resulting model was used to identify
“hotspots”: small spatial regions with unusually high
rates of crime. Previous research has suggested that di-
recting police patrols to hotspots can produce measur-
able crime reductions, with results varying by the type
of policing intervention employed (Braga, Papachris-
tos and Hureau, 2014). To test the self-exciting model’s
effectiveness in this role, Mohler (2014) compared its
daily predictions to true historical records of crime,
finding that it outperforms methods that consider only
fixed hotspots (equivalent to setting 6; = O for all /) and
those that only consider near-repeats (o; = O for all 7).

M
271 wo?

( ||s||2)
exp(—t/w)exp| — .

4.3 Epidemic Forecasting

Forecasting of epidemics of disease, such as in-
fluenza, typically rely on time series data of infec-
tions or infection indicators (such as physician reports
of influenza-like illness, without laboratory confirma-
tion), and hence often rely on time series modeling
or compartment models, such as the susceptible—
infectious—recovered model (Nsoesie et al., 2013). This
data does not typically include the location and time of
individual infections, instead containing only aggre-
gate rates over a large area.

When individual-level data is available, however,
point processes can model the clustered nature of in-
fections. Spatial point processes have been widely used
for this purpose (Diggle, 2014, Chapter 9), and when
extended to spatio-temporal analysis, self-exciting
point processes are a natural choice, with excitation
representing the transmission of disease. Again follow-
ing the ETAS literature, Meyer, Elias and Hohle (2012)
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introduced a self-exciting spatio-temporal point pro-
cess model adapted for predicting the incidence of in-
vasive meningococcal disease (IMD), a form of menin-
gitis caused by the bacterium Neisseria meningitidis,
which can be transmitted between infected humans
and sometimes forms epidemics. Unaffected carriers
can retain the bacterium in their nasopharynx, suggest-
ing that observed cases of IMD can be divided into
“background” infections, transmitted from an unob-
served carrier to a susceptible individual, and triggered
infections transmitted from this individual to others.
In a dataset of 636 infections observed in Germany
from 2002-2008, each infection’s time, location (by
postal code), and finetype (strain) was recorded. The
model includes unique features: rather than empirically
estimating the background function, it is composed of
a function of population density and of a vector of co-
variates (in this case, the number of influenza cases in
each district of Germany, hypothesized to be linked to
IMD). The resulting conditional intensity function is

A(s, 1) = p(s,t)exp(B'z(s, 1))
+ > elgt—1t)f(ls —s;l),

jers(s,t)

where I*(s,t) is the set of all previous infections
within a known fixed distance 6 and time &. Here
p(s,t) represents the population density, z(s,?) the
vector of spatio-temporal covariates, and n; = yp +
y'm j, where m is a vector of unpredictable marks on
each event, such as the specific strain of infection. The
spatial triggering function f is a Gaussian kernel, and
the temporal triggering function g is assumed to be a
constant function, as there were comparatively few di-
rect transmissions of IMD in the dataset from which to
estimate a more flexible function.

The results were promising, showing that the self-
exciting model can be used to estimate the epidemic
behavior of IMD. The unpredictable marks m; in-
cluded patient age and the finetype (strain) of bac-
terium responsible. Comparisons between finetypes re-
vealed which has the greatest epidemic potential, and
the age coefficient allowed comparisons of the spread
behavior between age groups.

Meyer and Held (2014) then proposed to replace
f with a power law function, previously found to
better model the long tails in the movement of peo-
ple (Brockmann, Hufnagel and Geisel, 2006). Using
the asymptotic covariance estimator given in equa-
tion (14), they also produced confidence intervals for
their model parameters, though without verifying the

necessary regularity assumptions on the conditional in-
tensity function (Meyer, 2010, Section 4.2.3). A simi-
lar modeling approach was used to test if psychiatric
hospital admissions have an epidemic component, via
a permutation test for the parameters of the epidemic
component of the model (Meyer et al., 2016).

Schoenberg, Hoffman and Harrigan (2017) intro-
duced a recursive self-exciting epidemic model in
which the expected number of offspring m of an event
is not constant but varies as a function of the condi-
tional intensity, intended to account for the natural be-
havior of epidemics: when little of the population has
been exposed to the disease, the rate of infection can
be high, but as the disease becomes more prevalent,
more people have already been exposed and active pre-
vention measures slow its spread. The model takes the
form

t
A5, 1) = ‘”/x/o HO(s', 1))g(s—s's 1 —') AN (s, ),

where g is a chosen triggering function and H is the
productivity function, determining the rate of infection
stimulated by each event as a function of its conditional
intensity. Schoenberg, Hoffman and Harrigan (2017)
took H(x) = kx™%, with ¥ > 0, to model decreasing
productivity, and fit to a dataset of measles cases in
Los Angeles, California with maximum likelihood to
demonstrate the effectiveness of the model.

4.4 Events on Social Networks

The models discussed so far have considered events
in two-dimensional space (e.g., latitude and longitude
coordinates of a crime or infection). Recently, how-
ever, self-exciting point processes have been extended
to other types of events, including events taking place
on social networks.

Fox et al. (2016) considered a network of officers
at the West Point Military Academy. Each officer is a
node on the network, and directed edges between offi-
cers represent the volume of email sent between them.
Fox et al. (2016) developed several models, the most
general of which models the rate at which officer i
sends email as

o
)»i(t):v,-pa(t)—l—Z Z b;jwie wi(t—r)

J r;(j <t

Here r,lcj represents the time of the kth message sent
from officer j to officer i, w; is a temporal decay effect
for officer i, and 6;; models a pairwise reply rate for
officer i’s replies to officer j. The background rate w(¢)
is allowed to vary in time to model time-of-day and
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weekly effects, with a offset v; for each officer. The
model is fit by expectation maximization and standard
errors found by parametric bootstrap.

Zipkin et al. (2016) considered the same dataset, but
instead of modeling a self-exciting process for each
officer, they assigned one to each edge between of-
ficers, which enabled them to develop methods for a
missing-data problem: can the sender or recipient be
inferred if one or both are missing from a given mes-
sage? The self-exciting model had promising results,
and they suggested a possible application in inferring
participants in gang violence.

Taking an alternate approach, Green, Horel and Pa-
pachristos (2017) modeled the contagion of gun vio-
lence through social networks in Chicago. The network
nodes were all individuals who had been arrested by
Chicago police during the study period, connected by
edges for each pair of individuals who had been ar-
rested together, assumed to indicate strong pre-existing
social ties. Rather than predicting the rate on edges, as
Fox et al. (2016) did, this study modeled the probabil-
ity of each individual being a victim of a shooting as
a function of seasonal variations (the background) and
social contagion of violence, as the probability of being
involved in a shooting is assumed to increase if some-
one nearby in the social network was recently involved
as well.

This is formalized in the conditional intensity for in-
dividual «,

MO =p@®)+ Y ikt — 1),
i<t

where () represents seasonal variation and the self-
excitation function ¢y, x is composed of two pieces, a
temporal decay fg(f) and a network distance gq (u, v):

fp(t)=pe™ ",
adist(u,v)™> when dist(u, v) <3,
8a(u,v) = .
0 otherwise,

Gu,p(t) = fﬂ(t)got(u, v),

where dist(u, v) is the minimum distance (number of
edges) between nodes u and v. The model was fit
numerically via maximum likelihood, and a form of
declustering performed by attributing each occurrence
of violence to the larger of the background u(¢) or the
sum of contagion from previous events, rather than us-
ing a stochastic declustering method as discussed in
Section 3.2.

5. CONCLUSIONS

When a spatio-temporal point process can be divided
into clusters of events triggered by common causes,
self-exciting models are a powerful tool to understand
the dynamics of the process. This review has high-
lighted developments in several areas of application
which enable fast maximum likelihood and Bayesian
estimation, declustering of events, and a variety of
model diagnostics. Not all of these tools are widely
adopted, particularly graphical diagnostics which have
only been developed over the past few years, and there
are many open problems: Bayesian estimation, for ex-
ample, could lead to hierarchical models which con-
sider several separate realizations of a process (such
as crime data from different cities), and the applica-
tion of self-exciting models to data on networks is in
its infancy, and likely has many other possible applica-
tions.

Interpretation of self-exciting models does require
care, however. For example, consider an infectious
disease with no known carriers—all transmission is
from infected to susceptible individuals, and any given
case could, in principle, be traced back to the index
case. The division into background and cluster pro-
cesses makes less conceptual sense here, since there is
not a background process producing new cases from
nowhere; if a self-exciting model were fit to infec-
tion data, the background process would capture cases
caused by unobserved infections, and an improved rate
of case reporting would decrease the apparent impor-
tance of the background process. Unobserved infec-
tions would also mean that m, the estimated number of
infections triggered by each case, would be underesti-
mated, as some triggered infections would not appear
in the data.

But when the underlying generative process is clus-
tered, self-exciting spatio-temporal point processes are
fast, flexible, and interpretable tools, with growing ap-
plication in many scientific fields.
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