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A bstract

The Karhunen-Loeve Expansion (K-L expansion) is a bi-orthogonal stochastic process 
expansion. In the field of stochastic process, the Karhunen-Loeve expansion decom
poses the process into a series of orthogonal functions with the random coefficients. 
The essential idea of the expansion is to solve the Fredholm integral equation, asso
ciated with the covariance kernel of the process, which defines a Reproducing Kernel 
Hilbert Space (RKHS). This either has an analytical solution or special numerical 
methods are needed.

This thesis applies the Karhunen-Loeve expansion to some fields of statistics.

The first two chapters review the theoretical background of the Karhunen-Loeve ex
pansion and introduce the numerical methods, including the integral method and 
the expansion method, when the analytical solution to the expansion is unavailable. 
Chapter 3 applies the theory of the Karhunen-Loeve expansion to the field of the 
design experiment using a criteria called “maximum entropy sampling” . Under such 
setting, a type of duality is set up between maximum entropy sampling and the D- 
optimal design of the classical optimal design. Chapter 4 uses the Karhunen-Loeve 
expansion to calculate the conditional mean and variance for a given set of observa
tions, with application to prediction. Chapter 5 extends the theory of the Karhunen- 
Loeve expansion from the univariate setting to the multivariate setting: multivariate 
space, univariate time. Adaptations of numerical methods of Chapter 2 are also pro
vided for the multivariate setting, with a full matrix development. Chapter 6 applies 
the numerical method developed in Chapter 5 to the emerging area of multivariate 
functional data analysis with a detailed example on a trivariate autoregressive process.



Introduction

One of the fundamental methods with a wide range of scientific applications, such as 

solving partial differential equations, signal processing and option pricing, is Fourier 

analysis. It is a decomposition of a real function into an infinite linear combination of 

orthogonal basis terms, usually the trigonometric basis functions, together with the 

Fourier coefficients. In practical applications , it is usual to use only a finite number 

of terms, say p. Moreover, when p increases to infinity, it can also be shown that 

under certain conditions the mean squared error using the finite representation in the 

space of the deterministic function converges to zero.

The Karhunen-Loeve expansion can be regarded as an extension of Fourier analysis 

from deterministic functions to stochastic processes. The Karhunen-Loeve expansion 

is a representation, in which the process is decomposed into a series of orthogonal 

functions, analogous to Fourier analysis. The process of finding the coefficients is 

similar to that of Fourier analysis, which is to minimise the mean squared error of the 

finite representation. The minimisation process involves solving an integral equation, 

the Fredholm integral equation. Using a finite representation of the Karhunen-Loeve 

expansion (the truncated Karhunen-Loeve expansion), when the order, p, of the or

thogonal functions increases to infinity, the mean squared error decreases to zero in 

the space of the stochastic process. Whereas, for Fourier analysis, the coefficients are

1
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deterministic and the orthogonal functions are usually the trigonometric functions, 

the coefficients for the Karhunen-Loeve expansion are random and the orthogonal 

functions are derived from solving a Fredholm integral equation related to the covari

ance function of the process.

Early work on the Karhunen-Loeve expansion includes tha t of Karhunen (1947), 

Loeve (1948) and Trees (1968). More recent research includes (i) contributions to 

its numerical methods (see, for example, Boente and Fraiman (2000), Phoon et al. 

(2002b), Phoon et al. (2002a) ), (ii) finite element methods (see, for example, Ghanem 

and Spanos (1991)), (iii) model reduction using the Karhunen-Loeve expansion (see, 

for example, Newman (1996b), Newman (1996a), Glavaski et al. (1998)), (iv) func

tional data analysis (see, for example, Ramsay and Silverman (1997), Ramsay and 

Silverman (2002)), (v) application in the field of finance (see, for example, Vargiolu 

(1998), Cont and Fonseca (2001), Schmidt (2004)), (vi) application in pattern recog

nition (see, for example, Kirby and Sirovich (1990)), and (vii) application in machine 

learning (see, for example, Rasmussen and Williams (2005)).

This thesis applies the Karhunen-Loeve expansions to some fields of statistics. 

Chapter 1 reviews the background of the Karhunen-Loeve expansion. It starts from a 

brief introduction to the Reproducing Kernel Hilbert Space (RKHS), which is isomet- 

rically isomorphic to the space our process lies in. It also provides a key theorem for 

the Karhunen-Loeve expansion and explains the optimality of the expansion in terms 

of the mean squared error. For examples such as the Browninan motion, the Brow

nian bridge, the Ornstein-Uhlenbeck process and the integrated Brownian motion, it 

is shown how to find the Karhunen-Loeve expansion analytically. The extension from 

the univariate Karhunen-Loeve expansion to the spatial Karhunen-Loeve expansion
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is also discussed briefly.

Chapter 2 deals with the situation when the analytical solution to the Karhunen- 

Loeve expansion are unavailable. Numerical methods, instead, play an essential role 

in finding the expansion. The integral method and the expansion method are ex

plained in detail with examples of both the Ornstein-Uhlenbeck process and the 

Gaussian process with squared exponential kernel. Numerical methods for the spa

tial Karhunen-Loeve expansion is explained briefly with an example provided on the 

Brownian sheet.

Chapter 3 applies the theory of the Karhunen-Loeve expansion to the field of the 

design experiment using a criteria called “maximum entropy sampling” . Under such 

setting, a type of duality can be set up between maximum entropy sampling and 

the D-optimal design from the classical optimal design. Two kinds of algorithms, 

which are the “greedy exchange algorithm” and “DETMAX” , are served to check the 

duality numerically.

Chapter 4 uses the Karhunen-Loeve expansion to calculate the conditional expec

tation and the conditional variance for the conditional on a set of observations. The 

behaviour of the generalised mean squared error for using the conditional expectation 

as the prediction is studied in detail. This chapter also develops an alternative way 

of treating conditional data, which is to calculate a “conditional Karhunen-Loeve ex

pansion” . Examples for both the Markovian process and the non-Markovian process 

are provided for the conditional Karhunen-Loeve expansion.

Chapter 5 extends the theory of the Karhunen-Loeve expansion from the uni

variate setting to the multivariate setting. “Multivariate” , in this chapter, refers 

to multivariate state, but univariate time. For multivariate process satisfying certain
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condition, the multivariate Karhunen-Loeve expansion is closely connected to the uni

variate Karhunen-Loeve expansion. Adaptations of multivariate numerical methods 

are also provided for this setting.

Chapter 6 applies the numerical method developed in chapter 5 in the field of 

multivariate functional data analysis. An example on trivariate AR{  1) process is 

studied in detail for the decomposition of the process, the reconstruction of the pro

cess, and the smoothing and the prediction of the process using the knowledge of both 

the covariance and the cross-covariance function under the multivariate Karhunen- 

Loeve expansion. The theory from chapter 5 proves useful in pointing to appropriate 

numerical methods.



Chapter 1 

Introduction to the  
Karhunen-Loeve Expansion

The Karhunen-Loeve Expansion (K-L expansion) is a bi-orthogonal stochastic process 

expansion. It was derived and investigated by a number of researchers (see, for 

example, Karhunen (1947), Loeve (1948), Ghanem and Spanos (1991)). The essential 

idea is to solve the Fredholm integral equation, associated with the covariance kernel 

of the process, which defines a Reproducing Kernel Hilbert Space (RKHS). This 

gives either the analytical or the numerical expressions for the kernel’s eigenvalue 

and eigenfunction. In this chapter, section 1 introduces the RKHS of the kernel and 

shows it is isometrically isomorphic to the space of our stochastic process. Section 2 

presents the main theorem of the Karhunen-Loeve expansion and some properties of 

its eigenvalue and eigenfunction. Section 3 studies examples of some commonly used 

Gaussian processes. Section 4 extends the univariate Karhunen-Loeve expansion to 

the multivariate time, univariate state (spatial) Karhunen-Loeve expansion.

5
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1.1 Reproducing Kernel H ilbert Space (RKHS)

A Reproducing Kernel Hilbert Space (RKHS) is a Hilbert Space of functions. It can 

be thought of as a space containing smoother function than the general Hilbert space. 

This section provides a brief introduction to it. See, for example, Aronszajn (1950), 

Kailath (1971), Wahba (1990), for details.

We start with a formal definition of the RKHS and present some main properties 

of this space. Then the RKHS is related to another commonly used subspace of the 

Hilbert Space, which is L2.

D efinition 1.1.1. A Hilbert Space is called a Reproducing Kernel Hilbert Space H , 

if for every function /  G H  defined on E , there exists a function K  : E  x E  —► R, 

such that

(1) For all y, as a function of x, K(x, y) G H

(2) Reproducing property: for all x G E

f(x )  = (K ( . , x ) J ( . ) )  (1.1.1)

Function K (x ,y )  is called the reproducing kernel of the space H.

The reproducing kernel has the following properties, which make it possible for 

covariance functions to lie in this space.

T heo rem  1.1.1. I f  a reproducing kernel K  exists, it is unique.



7

Proof. Assume there exists another reproducing kernel K ' , then

0 <  \ \ K ( x , . ) - K ' ( x , . ) \ \

= ( K ( x , . ) - K ' ( x , . ) , K ( x , . ) - K ’(x,.))

= ( K ( x , .) -  K'(x,  . ) ,K (x , .)) -  ( K ( x , .) -  K ' ( x , .), K ' ( x , .))

=  (K (x ,x )  — K'(x ,x))  — (K(x ,x )  — K '(x ,x) )  = 0

□

Theorem  1.1.2. A reproducing kernel K  is non-negative definite.

Proof. For all yi G E , on which the kernel is defined, and a1? a2, • • • , an

EE K {Vi, y^aiOj
i j

yi)iK(->yj))aiaj
i j

y*)a*’ y
i j

=  - 0
i

□

The following theorem is a key theorem in the RKHS theory. It states that 

the relationship between the RKHS and its corresponding kernel is one-to-one. See 

Aronszajn (1950) for detail.

Theorem  1.1.3. (Moore-Aronszajn theorem): To every Reproducing Kernel Hilbert 

Space H , there exists a unique non-negative definite function K {.,.). Conversely, for 

every non-negative definite function K ( . , .), there exists a unique Reproducing Kernel 

Hilbert Space H .



Proof. In a Reproducing Kernel Hilbert Space H, uniqueness and non-negative defi

niteness of the kernel are guaranteed by theorem 1.1.1 and theorem 1.1.2 respectively. 

This proves the first part of the theorem. In order to prove the second part, the fol

lowing two lemmas are required.

Lemma 1.1.4. The reproducing kernel K(., x), x  G E, on which the kernel is defined, 

spans a Reproducing Kernel Hilbert Space H, i.e.

H  = Closure(lin[K(., x ) ])  = Closure{y^ XjK(., Xj), Xj G R}  (1.1.2)
i

where lin[AT(., z)]) =  {JT  A*K(., xf), Xt G R}

Proof. The zero vector is the only vector orthogonal to K(., x),Vx  G E, since

/(* )  =  (/(.), K(. ,x))  = 0 (1.1.3)

□

Lemma 1.1.5. Norm convergence implies pointwise convergence in the Reproducing 

Kernel Hilbert Space H .

Proof. Assume a Cauchy series f n G H  and Vx

|/„(*) -  f (x) \  = I(/„(.) -  f ( . ) ,K( . ,x ) ) \  < ||/„ (.) -  / ( . ) | | | |K -( . ,x ) | |  (1.1.4)

The inequality above uses the Cauchy-Schwartz Inequality. Hence | | / n(-) — /(•) 11 -*> 0 

implies |f n(x) -  f(x )\  -> 0. □

Lemma 1.1.4 and 1.1.5 suggest a way of constructing the Reproducing Kernel 

Hilbert Space. This comprises all the linear combinations of the kernel function and 

the pointwise limit to all the sequences, to complete the space.
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Assume H0 = (lin)[K(.,z)] and /( .)  =  JT  a i/f  (.,£<) G H0,g(.) =  J 2 j bj K {^Vj) € 

H0. The inner product is defined as

(/(•). fl(0) ■ = Y l ' l l aihi K (Xi' yi} (1 L 5 )
i j

The above double summation is well defined since aibjK(xi , yj) G i/o- It meets

the requirement of the inner product as well. Linearity and symmetry are satisfied 

because the double summation is a linear term. Hence it only needs to be shown that 

for all y, ( /(y ) ,/(y ) )  = 0, f( y )  = 0. The reproducing property holds since,

(/(■)> K{-V)) = ^ T aiK {xu y) =  f (y )  (1.1.6)
i

Then, using Cauchy-Schwartz inequality, for all y, we obtain

0 <  | / (y ) |  <  | | / ( . ) | | | |^ ( .y ) | |  (1.1.7)

Since (/( .) , /( .) )  =  0 implies ||/ ( .) | | =  0, then f{y) = 0, for all y.

Finally, we complete this space by including all the limits of all the Cauchy se

quences. Pointwise limit is enough, i.e. include all /(y ), for all y, such that for the 

Cauchy sequence f n(y) G H0

I f n{ y )  -  f ( y )I  - >  0  ( 1 . 1 . 8 )

Hence the unique Reproducing Kernel Hilbert Space required is H  =  span[Ar(.,a;)].

□

The L2 space is another typical subspace of the Hilbert space, but the L2 space 

and the RKHS are not equal to each other. The L2 space, in general, is a “rougher” 

space. It does not certainly contain functions that are pointwise convergent. However,



10

as is shown in lemma 1.1.5, norm convergent always implies pointwise convergent in 

the RKHS. The following example shows that norm convergent does not equal to 

pointwise convergent in L 2.

E x am p le  Consider the function in L2

where g(t) =  0, for all t. Hence gn is norm convergent to g. However, when t ap

proaches to zero, gn(t) oscillates between 1 and —1, which does not support pointwise 

convergent.

Another function, which belongs to the RKHS, but not the L2 space is the Dirac 

delta function defined as

property, it can be seen that S(x) belongs to the RKHS, but not the L2 space.

Under certain condition, the RKHS can be regarded as an embedded space of the 

L2 space. The following theorem shows this result.

T h eo rem  1.1.6. Assume K(. , . )  is an L2 kernel, i.e. f  J  K ( s , t ) 2dsdt < 00. For all 

f  G L2, assume that the Fourier coefficients for f  is fi, i.e.

1 0 < i < -  if n  is oddn

— 1 0 < £ < -  if n is evenn

0 otherwise

(1.1.9)

This is norm convergent to zero, since

(1.1.10)

(1.1.11)

The Dirac delta function has the property that f  f (x)5(x)dx = /(0 ). From this

(1.1.12)
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where (pi is defined in equation 1.1.15. Then f  £ R K H S  if

î i2 = E § <tx> (L1-13)
i

For all f  £ L2 and g £ L 2, the inner product in this RKHS is defined as

i / , j )  =  E f  - (L1-14)
i

where fi,gi are the Fourier coefficients for f , g  respectively. The series {(pi) is an 

orthogonal series in L2. Both A» and fa are from Mercer’s theorem, i.e.

K ( s , t) = Ai<pi(s)<pi{t) (1.1.15)
i

(This equation for K  can also be derived from the Karhunen-Loeve expansion, which 

will be introduced in the next section.)

Proof. The Fourier expansion for /( .)  and K ( x , .) can be written as

/(•) =  Y l f c M - )
i

K{x, .)  =  ^2[\i<pi{x)]<pi(.)
i

Since

y :  — ^ - ■ yj\j(pi{x)2 = K{x,  x) < oo (1.1.16)
^iI

the inner product ( /, K{x.))  makes sense and its value is

( / , k {x , .)) =  £  =  £  f i M x ) =  /(* )
i i

This means that K(x . , )  is a reproducing kernel and thus /  £ RKHS with norm

ii/ ii2 =  e , £ -  □
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Remark 1.1.1. In the space of L2, unless specified, the concept of orthogonal refers 

to orthonormal in this thesis. It means that if {/*(£)} is an orthogonal series in L2,

J  f i{t) fj(t)dt = 5ij (1.1.17)

Remark 1.1.2. For any function /  G L2, only the condition 'Yhi f f  < oo is required. 

W hat the above theorem states is that if the function /  also lies in the RKHS, an
f2

extra condition < 00 should be assumed, which might not be satisfied by all

the L2 functions.

1.2 The Karhunen-Loeve expansion

In the Karhunen-Loeve expansion, we represent a stochastic process {X ( t ) , t  G T}  

via a sequence of independent simple random variables G N}.  Assume that the 

random process X  (t) is a zero mean second order process. Its corresponding kernel 

K(s , t )  = cov (X ( t ) ,X ( s ) )  is in the RKHS with its unique kernel function K

Assume that {&(£)} is a series of orthogonal functions in Z,2 derived from certain 

integral equations, the process can then be written down as

OO

X ( t )  =
1 = 1

ft =  ~ ^ J  X(t)<f>i(t)dt

The basis function {<&(£)}, together with the uncorrelated random coefficients 

{£i} constitute a bi-orthonormal system. That is, the basis functions are orthogonal 

as functions and & are independent in the sense tha t £(£;) =  0 and cov(^fj) =  Sij.

The following theorem provides a sufficient and necessary condition for the de

composition of the process.
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T heorem  1.2.1. Let { X ( t ) , t  G T} be a zero mean second order process. Its covari
ance function is continuous and denoted as K (s , t )  for the covariance in between time 
s and time t.

Let {4>i,i G N }  be the set of orthogonal functions of  L2.

1. Assume that A* and (pi satisfies the following equation

J  K(s,t)(pi(t)dt =  \i<pi(s) ( 1 -2 .1)

where {(pi,i G N } and {Â , z G N }  are called the eigenfunctions and eigenvalues 
respectively.

Furthermore, choose

( i = - X J x ( t)<i>i(t)dt (1.2.2)

Then,
p

X( t)  =  lim S 2  (1.2.3)p—>oo * *i= 1

uniformly, in the sense that

p
E(X(t )  -  Y i \ f i l Z M t ) ) 2 -  0 (1.2.4)

1 = 1

uniformly.

2. Conversely, if  X ( t)  = where {£*} is identically independent
distributed (i.i.d.) with mean 0 and variance 1, then

J  K(s,t)<pi(t)dt = Xi<pi(s) (1.2.5)

Proof, (a) From the construction of & , it is easy to see tha t E(&) = 0 and E(£i£j) = 
Sij. Since,

£(&) = E ( - f  =  J
=  - L  J  E(X ( t) )Mt)d t

=  0
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m t j )  = e {

Also, note that

Hence,

^ - j = J ^ J ^ X ( t ) U t ) X ( s ) ^ ( s ) d t d s )

J  J  E(X(i)X(s))0i(t)<fe(s)d«ds
J  ( J  K{t,s)<jii(t)dt)<j>j{s)ds

1 1

y/Xl y / \ j  
J  l _

y / \ j

y/Xi y/Xj Jt  

Xi AOij

=

E(X(t)(i) = -~= E(X ( t )  J^X(s)4>i(s)ds)

E(X{t)X(s))<j>i(s)ds
y/X~i j t

i r
y f K  J t

V  \
= y/Xi<f>i{t)

K ( t , s)4>i(s)ds

E(X ( t )  -  ^  ^ /X i i iU t ) )2
i= 1

=  £ p f ( t ) 2 -  2 ^  v/A& M t ) X ( i )  +  J 2 Y 1
p p

i= 1 
p

1=1 J=1
p p

= E ( X ( t ) 2) - 2  J 2 ^ M t ) E ( i i X ( t ) )  +
i=l i=l j=l
p p

= £(X(«)2) - 2 ^ v / \ ^ W %/ <̂/>i(<) +  ^ Â iW2
2—1 2 = 1

=  £ (X (t)2) - ^ A A ( 0 2 ^ 0  ,
1 = 1
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uniformly as p —> oo. This convergence follows directly from Mercer’s Theorem. (See, 
for example, Appendix 7.1, Mercer (1909), Porter and Stirling (1990), for details.)

(b) If X(t)  = Y , Z i  then

K(t , s )  =  E(X( t )X(s ) )
OO oo

i— 1 i—\ 
oo

=  Y , x i M t ) M s )
i=  1

Hence,

J n /» OO

K(s,t)<j>i(t)dt = /  (1.2.6)
r  J r  -= 1

Thus, f T K(s,t)(pi(t)dt =  A^i(s), using the fact that {</>*(£)} is orthogonal. □

Theorem 1.2.1 provides a one-to-one relationship between equation 1.2.1 and the 

Karhunen-Loeve expansion. Equation 1.2.1 is well known in mathematics as the Fred- 

holm integral equation. Only in a limited number of cases can the explicit solution to 

the integral equation be found. Numerical solutions play a major role in applications.

Assume that X(t) ,  t £ T  is a family of zero mean Gaussian processes with 

E[X( t )X(s )] =  cov[A(t), A(s)] =  K(t ,s) ,  where £, s G T  and E  represents the 

expectation. Now a space, Hx , which is isometrically isomorphic to the RKHS with 

reproducing kernel K  can be defined in the following way. We construct the space 

Hx  spanned by X(t) ,  t G T, i.e.

Hx  = span{X(t),£ G T} (1.2.7)

with the covariance as the inner product. It means tha t for X m, X n E Hx , i.e.

Xm = ^CLiXi t i ) ,  x n = 'ŝ b ix { t i) (1.2.8)
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where U £ T , then the inner product (Xm, X n) = cov(Xm, X n) = E[XmX n]. This 

inner product is valid, since its properties, such as linearity and non-negative defi

niteness, can be checked using the properties of the expectation.

Meanwhile, because Hx  is a closure, it should contain all the limits of all the 

Cauchy sequence, i.e. if X m is a Cauchy sequence in Hx  and X  satisfies

then X  £ Hx . The space of Hx , and the RKHS are isometrically isomorphic, since 

for £, s £ T

In practice, only p terms is used in the Karhunen-Loeve expansion. The expression 

with a finite number of terms is called the truncated Karhunen-Loeve expansion. The 

use and the optimality of the truncated Karhunen-Loeve expansion is one of the main 

features of this thesis. The truncated Karhunen-Loeve expansion is optimal in the 

following sense:

Let { X ( t ) , t  £ T} be a zero mean second order process with covariance function 

K(s , t )  s :t £ T . Let £ N }  be the set of orthogonal functions in L2. We can 

then expand X(t)  as an infinite series of 4>i(t) as

||X  -  Xm||2 =  E[X -  X m}2 -> 0 (1.2.9)

(X (t),X (s)) =  £[X (<)X (s)]=cov[X (<),X (s)] =  .K(t,s; 

=  (K(t , . ) ,K(s , . ) )

( 1 .2 . 10)
i> 1

where

(1 .2 .11)
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The truncated version of X  (t) at order p is expressed as

p

x p(t) = J2 \/A^i(t)Ci (1.2.12)
i=  1

Then, the error of the truncated expansion can be defined as

=  X  v ' w .  (1.2.13)
i>p+l

The truncated Karhunen-Loeve expansion is optimal in the sense that its inte

grated mean squared error is minimised. This will be shown in theorem 1.2.2. 

Theorem  1.2.2. Among all the truncated expansion expressed as

p

X p ( t )  =  X  . (1.2.14)
1= 1

where (fifit) satisfies

J  f f i t ^ f iP jd t  =  Sij (1.2.15)

the Karhunen-Loeve expansion minimises the integrated mean squared error, i.e.

j ’ E(e%t))dt . (1.2.16)

where E{.) represents the expectation and

epM =  ^ 2  (1.2.17)
m > p + 1

Proof. The square of the error can be written as

=  X  X
m > p + 1 n>p+l

=  X  X  <i>m{t)(t>n{t) f  (  X{ti)X{Si)<f)rn{ti)<t)n {Si)dtidSi
m > p + 1 n > p + 1 ^  ^

Then the mean squared error can be expressed as

E (el ( t ) ) =  ^ 2  zC  M W n i t )  j  f  K(ti ,  si)(/}m(ti)(l)n(si)dtidsi (1.2.18)
m >p+ 1 n> p+l ^
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Integrate both sides of the equation and use the orthogonality of eigenfunctions, then 
the integrated mean squared error can be obtained.

E(e2p(t))dt = £  £  £
m > p + 1 n > p + 1 ^  T  T

^   ̂ I I S\)(j)rn{t\)(j)rn{^S\)dt\dS\
m > p + 1 J T J T

Now the integrated mean squared error can be minimised given the orthogonality 
condition for the function <£»(£), i.e.

m m ,  S-t- = 1 (1.2.19)

Therefore, the target function for minimisation can now be re-written as

Q =  i f  f  ^(*i>s i)0m(*i)0m(si)cM si -  Am( f  ( ^ { t ^ d t i  -  1)] (1,2.20)
m > p + 1 ^ T  J T  J T

Differentiate Q with respect to > p +  1. Notice that this is a functional
derivative. Then we obtain

d
ja,{+\Q = <2[  ^ ( 5>t)(j)i{s)ds -  2Ai</>i(*) (1.2.21)d<pi\t) 77-

Setting the above equation to zero results in the following equation

J  K(s,t)<f>i(s)ds = Xi4>i(t) (1.2.22)

This is the Fredholm integral equation. Since the Fredholm integral equation and the 
Karhunen-Loeve expansion have one-to-one relationship, the Karhunen-Loeve expan
sion minimises the integrated mean squared error among all the expansion expressed
in equation 1.2.14. □

Remark 1.2.1. The functional derivative, used in deriving equation 1.2.21, is a gen
eralisation of the directional derivative. Instead of a differentiation with respect to 
a variable, functional derivative is a differentiation of a function with respect to the 
function. It is defined as follows

d - m n = ( 1 . 2 . 2 3 )d<f>(t) e

Functional derivative arises from calculus of variation, which can be regarded as an 
extension of calculus. For details of calculus of variation, see, for example, Sagan 
(1992).



Remark 1.2.2. If the stochastic system {X ( t ) , t  G T} is a non-zero-mean process, we 
can subtract its mean first before applying the Karhunen-Loeve expansion, i.e.

OO

X(t)  = E(X(t ) )  +  £  y f i i h m t (1.2.24)
i= 1

Remark 1.2.3. In some literature, especially that on the integral equations, compact 
integral operator theory is used. A compact integral operator /C for the Fredholm 
integral equation is defined as

Hence the integral equation for the Karhunen-Loeve expansion can be written com
pactly as JC(f>(t) = A4>(t). Using properties of compact operators, it can be shown that 
if there are infinitely many eigenvalues { ,  z G N }  satisfying the Fredholm integral 
equation, then A* —* 0 when i —» oo. See, for example, chapter 4, Porter and Stir
ling (1990), for details. Using an integral operator is helpful to solve certain integral 
equations, such as those related to the integrated Brownian motion. This will be 
presented in section 1.3.

1.3 A nalytical exam ples

For certain processes related to the Brownian motion, the analytical solution to the 

Karhunen-Loeve expansion can be found. Four analytical examples will be discussed 

here, the Brownian motion, the Brownian bridge, the Ornstein-Uhlenbeck process 

(O-U process) and the integrated Brownian motion. For simplicity, the time interval 

for all the processes here are assumed to be at [0,1], i.e. T  =  [0,1].

Exam ple 1: The Brownian m otion

The covariance function K (s , t )  for the Brownian motion is min(s,£). Hence, the 

integral equation is written as

(1.2.25)
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Or equivalently

J  s<j>(s)ds +  t J  s(f>(s)ds = \<f>(t) (1.3.2)

Note that the above equation implies the boundary condition 0(0) =  0. Evaluating 

the first derivative to both sides of the equation, we obtain

/
i j

s0(s)ds =  A—0(t) (1.3.3)

Take the derivative one more time,

- 0 W  =  (L3-4)

Solution to this ordinary differential equation is of the form

0(£) =  Asm{-j=)  +  Bcos(-j=)  , (1.3.5)

where A  and B  are constants. Since 0(0) =  0, then B  = 0 and 0(t) =  A s in (^ ) .

For eigenvalues, 0(£) is substituted into the first derivative equation.

G s t 1
A I sin(—=)ds =  HAcos(-^=)-y=

Jt v A v  A v  A

Acos(-^=) — ;4cOs(-y=) =  Acos(-j=) 
v A v A v  A

Hence, cos(^==) =  0, which implies

=  ( L 3 '6)

The constant A can be found through the orthogonality condition for 0*(£)

1 =  [  = A 2 f  sin2{-^=)dt = A 2 f  sin2[(z — i)7rt]dt =  (1.3.7)
Jo Jo V A  J o 2 2

Thus, A =  \/2. Therefore, the Karhunen-Loeve expansion for the Brownian motion 

can be represented as

W(t) = V 2 J 2  . ■ ■: sin[(i -  (1.3.8)
i> l ' '

where {£*} are i.i.d Gaussian process with mean zero and variance one.
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Remark 1.3.1. The integral operator K for the Brownian motion can be expressed as 

a multiplication of two simplified operators defined as the following

To<f>(t) = J  <f>(s)ds, Ti<f>(t) = cj)(s)ds (1.3.9)

Then the integral operator for the Brownian motion is ToTi, since

/ cov(W(u),W(t))(f>(u)du = / min(u, t)<fr(u)du
J o  J o

=  J  u(p(u)du +  <j>(u)du

f t  r u  r \  f t

= 4>{u)dsdu + / / 4>(u)dsdu
J o  J o  J t  J o

= <j)(u)duds +  / / 4>{u)duds
J 0 J s  J 0 J t

n (p{u)duds = f  Ti4>(s)ds
J  o

=  ToTrfit)

This result will be shown to be useful for finding the eigenvalues of the integrated 

Brownian motion in example 4.

Exam ple 2: The Brownian bridge

The Brownian bridge X(t)  can be derived from the Brownian motion W(t)  by con

ditioning on W (l) =  0. The analytical relationship can be written as

X(t)  = W ( t ) - t W (  1) (1.3.10)

The corresponding covariance function for X (s) and X(t)  can be expressed as

min(s, t) — st
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Hence, the integral equation is written as

J  (min(s,£) — st)(f>i(s)ds = A»<£»(£) (1.3.11)

Differentiate with respect to t for the first time,

[  <j>(s)ds — [  s<fi(s)ds — (1.3.12)
Jt Jo dt

Take the derivative one more time,

- m  =  (1.3.13)

This is exactly the same second derivative as that for Brownian motion. Hence,

combining with the boundary condition 0 (0) =  0, we have

<f>(t) =  Asin(-^=) (1.3.14)

Now 4>{t) is substituted into the first derivative equation to obtain

V/Acos(—̂=) — VXcos(-y=) — Asin(-i=) +  \/Acos( —j=) =  A—-= cos( —p=) (1.3.15) 
vA vA vA vA vA vA

Hence, s in ( ^ )  =  0, which implies

Ai =  0 2 , * > l  (1.3.16)
I 7T

As before, the orthogonality condition of is used to find A

A 2 f  sin2(—̂ =)dt =  A2 f  sm2(i7rt)dt = — 1 (1.3.17)
Jo  vAi Jo  2

Again, A = y/2. Therefore, the Karhunen-Loeve expansion for the Brownian bridge 

can be represented as

X(t)  = V 2 Y  — s’m(i7Tt)^i (1.3.18)
'' ITTi> 1

where {&} is a i.i.d Gaussian process with mean zero and variance one.
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Remark 1.3.2. It can be seen that the Brownian bridge is the Brownian motion W(t)  

conditional on W (l) =  0. Therefore, the Karhunen-Loeve expansion for the Brow

nian bridge can be regarded as an extension of the Karhuneen-Loeve expansion of 

the Brownian motion. This extension is related to a concept called the “conditional 

Karhunen-Loeve expansion” . We refer to section 4.5, chapter 4, for a detailed discus

sion.

Remark 1.3.3. The Karhunen-Loeve expansion of the Brownian bridge can be applied 

to the goodness of fit test, since the asymptotic behavior of the test statistic involves 

a multivariate Brownian bridge. See, for example, Cheng and Jones (2004), for detail.

Exam ple 3: The O rnstein Uhlenbeck process (O -U process)

For /3 > 0 and p > 0, We have a stochastic differential equation (SDE) for the 

stochastic process Z(t)

dZ{t) = —j3Z(t)dt +  pdW{t) (1.3.19)

This SDE can be solved and the corresponding solution is

2
If Z{0) ~  3V(0, c), where c =  |g, Z  is called an O-U process with parameters (3 and c. 

Note that

[  P-P(s-u)HW } =  F,( f  P . - W - ^ d W . .  f
S

cov( e -W -^dW u,

min(t.s)
eBudWuf \  =  e-'3(‘+s)

e- Ws- u)dWu)
0

min(t,s)

p - f 3 { t + s )
£______/ 2/mnn(M) _  •, n

2 /3  [ 1

e - P \ t - s \  e ~ (3( t+s)

2 /3  2 /3
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Hence,

cov(Z(t),  Z ( s )) =  e ' /,(l+s)Var(Z(0)) +  p2cov( [  dWu, [  e ^ ’-^dWu)
J o  J o

p - (3 \ t - s \

=  p ~ ^ r = 0 6

Once p and j3 are fixed, c is a constant. A constant term will not affect the calculation 

procedure of the Karhunen-Loeve expansion. The reason is as follows. Assume that 

there are two Fredholm integral equations.

J  K(s,  t)4>i(s)ds = Ai0 i(t) and J  cK(s, t)$ 2 (s)ds = , (1.3.21)

where c is a constant. It can be seen that the relationship between Ai and A2, 

and 02 (t) is

A2 =  cAi and (f>i(t) = 02(£) (1.3.22)

Hence the constant term c in the Fredholm integral equation will only affect the 

eigenvalues by multiplying c, while the eigenfunctions remain the same.

For simplicity, in this example, it is assumed that c — 1 and therefore, only the 

covariance function exp[—(3\s — £|] is decomposed. This involves solving the following 

integral equation.

f  exp[~P\s — t\}4>(s)ds = \cf)(t) (1.3.23)
J o

Expand the left hand side of equation 1.3.23, we obtain,

J  ̂ exp[—P(s — t)](f>(s)ds +  J  exp[—(3(t — s)]0 (s)ds =  X(f>(t) (1.3.24)

Differentiate equation 1.3.24 with respect to t for the first time, we obtain

P[ f  exp[—{3(s — t)\(p(s)ds— f  exp[—fi(t — s)]0(a)rfs] =  A (1.3.25) 
J t  J o  d t
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Differentiate equation 1.3.24 with respect to t for the second time, we obtain 

0[—2<f>(t)+J /?exp[—j3(s—t)](/)(s)ds+J /3exp[~P(t—s)](p(s)ds] =  A (1-3.26)

Simplifying equation 1.3.26 results in

d2(f>(t) , 2 n U 2 2/3 — /52A , 1 0 0 ^——----h u; cp(t) = 0 where w = ----------------------------------  - (1.3.27)
atz A

Solving the differential equation 1.3.27, we obtain

4>{t) = Acos(wt) +  Bsin(wt) (1.3.28)

Notice that the boundary conditions in the O-U process involve both the original 

eigenfunctions and their first derivative, since

A0(O) =  [  exp(—(3s)(f>(s)ds, A-j-0(O) =  (3 f  exp(—fis)(f)(s)ds 
Jo dt J o

A0(1 ) = J  exp(-/?(l -  s ))0 (s)d s ,A ^0 (l) =  J  exp(-/?(l -  s))<f>{s)ds

This gives the boundary conditions

j t m  -  o m  =  o

j t m  +  M l )  =  0

These can be expressed as

A/3 — Bw = 0

A(P — u;tan(u;)) +  B(/?tan(iu) +  w) = 0 

In order to obtain non-zero solutions for A  and B , we need

det (  13 ~ W )  =  0 (1.3.29)
\j3 — wtan(w) /?tan(iu) + w j



26

which means that

w2 — fi2
cot(w) =  ——----- &  w2sm(w) — (32sm(w) =  2(3wcos(w) (1.3.30)

After solving for w, A can be derived via A =  w2 +p2 • For the unknown parameters A 

and Z?, using the fact that B  — £ A  and the orthogonal condition for the eigenfunction 

fo 4>2{t)dx =  1, we obtain

. I 2 w2
A =

2(5 +  w2 +  (52

B =  —A =  ' 2/32w y 2/? 4- w2 +  (32 

Then, when k > 1, the eigenvalue and the eigenfunction can be expressed as

=  ~ r r m '  (L3-31)w% +  (5l

/ 2 w2 / 2 62
M t )  = V  2 /3  +  w(+ p C°s{Wkt) +  V  2 0  + v i +  (PSin{Wkt) ( 1 '3 '3 2 )

Now we can present the asymptotic behaviour for A A s s u m e  that Wk is an increasing

function of k and Wk —» oo when k oo. This assumption makes sense since,

according to remark 1.2.3, A*, is a decreasing function of k and A*, —> 0 when k —» oo.

Then
w \ -  (32

cotfWk) =  —1̂ -------- > oo when k —> oo
2 (3wk

The asymptotic behaviour of Wk is therefore,

Wk — kir when k —* oo

Replacing Wk in A*, with kn, we obtain the asymptotic behaviour of Â

26 1

A* "  “  K V  when * "  00 ( 1 ' 3 ' 3 3 )
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E xam ple  4: T h e  m -in teg ra ted  B row nian  m o tio n

The general m-integrated Brownian motion is defined as

X m(t) = f  f  •• f  Wio(to)dtQdtidtm- i  (1.3.34)
J Trn J%m — \ J T\

where i0 is either 0 or 1, Wo(t) = W (£), which is a Brownian motion, W\(t) =  W (1—t), 

and

in this example.

We start by recalling operators T0 and Ti, which have been introduced for the 

Brownian motion in example 1.

Using the operators T0 and Ti, the m-integrated Brownian motion can be written as

Then the integral operator for X m(t) is expressed through the following two proposi

tions.

% = [0, U] or [U, 1], ti E (0,1), i =  1, • • • , m  -  1 

%n =  [0,£] or [t, 1], t G (0,1)

The above multiple integral will be shown to be related to the Sturn-Liouville problem

(1.3.35)

x m(t) = T i rnTim_1---TilWi0(t), i j E { 0, 1}, j  =  0, • • • , m (1.3.36)

P ro p o sitio n  1.3.1. Define Wo(t) =  W(t),  which is a Brownian motion and W\(t) = 

W(1 — t) = Wq( 1 — t). Then the integral operator for Wfit) is TjTi_i, i G {0,1}.
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Proof. In remark 1.3.1, proposition 1.3.1 has been proved to be true for i = 0. For 

2 — 1, the proof follows the same procedure. □

P ro p o sitio n  1.3.2. Let { X ( t ) , t  G [0,1]} be a zero mean second order process with 

the integral operator 1C. Then the integral operator for T{X(t) is TiKTi_i, i G {0,1}

Proof. Notice that

ro

When i = 0, on one hand

't

T0X( t )  =  J  X(s)ds , TxX( t )  = J  X(s)ds  (1.3.37)

ToKT̂t) = f KTrfWds 
Jo

n K ( s , u)Ti(j)(u)duds

= / K(s ,u)  4>(v)dvduds
Jo Jo J u

= K(s,u)4>(v)dvduds
Jo Jo J  u

On the other hand

*1 n 1
cov{TQ(X{t) ) ,TQ{X{v))J>{v)dv =  /  E { n { X ( t ) ) T Q{X{v))<j>{v)dv

r0 JO
*1 rv r tm l

K ( s , u)dsducf)(v)dv

m D
K(s,  u)(p(v)dudsdv

_
't pi  pv
K ( s , u)(f){y)dudvds'o Jo Jo

*t pi pi
=  / / / K(s,u)<p(v)dvduds

Jo Jo Ju

Hence, T0/CTi</>(£) =  cov[7o(X(t)), To(X(v))\0(v)dv, i.e. the integral operator for

To(X(t)) is Tq/CTi. The proof for i =  1 follows similarly. □
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Combining the above two propositions and using induction, corollary 1.3.3 can now 

be derived.

C o ro lla ry  1.3.3. The integral operator for the m-integrated Brownian motion is

— TirnTim_i • • • TioTi_ioTi_i2 • • • Ti_im (1.3.38)

Proof. This is a direct result from the above two propositions.

Using induction, when m = 1, since the integral operator for Wio is Kf = TioT i - io, 

the integral operator for is T ^/C 'T i^ =  T ^ T ^ T i ^ T i ^

Assume the result holds when m = n — 1, i.e. the integral operator for X n_i =

Tin_x ■•■TilWio is

£  = Tin_1 ■ " T ioTi^iQ • ■-T i - in_l (1.3.39)

Then when m = n, the integral operator for X n = TinX n_i is

T i X ' T i-i«  = r nTin^  ■ ■ ■ TioT,_io • • ■ (1.3.40)

as is required. □

Using corollary 1.3.3, in order to derive the Karhunen-Loeve expansion for the 

m-integrated Brownian motion, the following integral equation needs to be solved.

TimTim_i • • • TioTi_ioTi_i2 ■ ■ • T i - im4>{t) =  A<f>(t) (1.3.41)

After differentiating equation 1.3.41 (2m +  2) times, the following is obtained.
j2m+2

( - i  r + im  =  (1.3.42)

with boundary conditions

d dm JZm+l
=  d t =  ’ "  =  =  dtm+1^  - i o )  = • "  = dt2m+ - i m)  = 0

'----------------------- V----------------------- '
m+i conditions

(1.3.43)
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This system of equations is known as the Sturm-Liouville problem. See, for example, 

Zill and Cullen (2001), Naimark (1968), for details.

There are two special cases worth discussing here. One is defined as

x L(t) = [  [  ••• [  Wo(t0)dt0 ■ • • dtm- i  (1.3.44)
Jo Jo Jo

with the corresponding boundary conditions

.J f jm (i m+1  J2m +1

* ° >  =  J tm  —  -  =  S ^ (1) =  =  =  ° ( L 3 '45)

We call the m-integrated Brownian motion of the first type. Its integral operator 

is

T W T o l W i  (1.3.46)
m + 1 m +1

X ^ t )  can also be written as

*m (*)=  f x l n - i M d s  (1.3.47)
Jo

with Xo(t) = W(t).  In some literature (for example, Chen and Li (2003), Rue and

Held (2005)), X ^  can also be expressed as

1
= - 7  /  ( t - s ) m" 1W (s)ds 

ml Jo

The other special example of the integrated Brownian motion is defined as

x*(t)  =  i  ■ fofLr - - fo‘ W^ dto - " dt'n-i if™  is odd
\  ft) J L ,  ' ' '  fil Wo(io)dio ■' ■ dlm̂ i if m is  even

with the corresponding boundary conditions

d dn dn+1 d2m+1
m  = J t m  = -  = ^ m  = =  • • • =  ^ * ( 1) =  o d.3.49)

n  is even



31

We call X ^  the m-integrated Brownian motion of the second type. The covariance 

operator for X ^  is

TqT iTq • • ■ T iTqT i (1.3.50)
S V J

2m +2

The covariance function for X ^  and X ^  can be expressed as follows. The covariance 

function for X ^  is

K L (S> t) = f  (s -  u)m(t -  u)mdu (1.3.51)

and the covariance function for X ^  is

K l l( s , t ) =  / • • • /  (m in(s,si))(m in(si,s2)) ••• (mm(srn,t))ds1ds2 •• -dsm (1.3.52) 
Jo Jo

Normally, the Karhunen-Loeve expansion is derived from solving an integral equa

tion involving a covariance function. However, in this example, due to the complicated 

structure of the covariance function, it is very difficult to solve the integral equation 

directly. Nevertheless, using the operators discussed above, the analytical solution 

to X ^  is straightforward to derive, while the analytical solution to X ^  remains in

tractable. After finding the eigenvalues and eigenfunctions for X we provide a 

simplified example of X ^  when m  = 1.

T h eo rem  1.3.4. The eigenvalue and eigenfunction for X ^  are

T A l m +1

(2 i — 1) 2 7T2 

<fii(t) = \ / 2sin[(z -  i ) 7rt]

i > 1

respectively.
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Proof. The integral operator for X ^  is

TqT iTq ■ • • T iTqT i (1.3.53)
2m +2

Define C = TqT i , which is the covariance operator for the Brownian motion, W{t). 

We denote the eigenvalue and the eigenfunction of W(t)  as and (f)w (t)

where, when i > 1

= (2 i — l ) 27r2

(f>Y(t) = V ^ 2 sin [(z  -  ^ )tTt]

Now the integral operator for X ^  is Cm+1. Hence

x m = K i m  = c m+im  = ( \ w r +im

This means that when i > 1

W \m + lAi =  ( A r r +i =
• 4

(2 i — l ) 2 7r2
(1.3.54)

(j>i(t) = (fY(t) = \/2sin[(z -  i)7rt] (1.3.55)

□

Although X ^  looks less complicated than X no analytical solution to the Karhunen- 

Loeve expansion exists for X ^ .  In theorem 2, Gao et al. (2003), the asymptotic 

behavior for the eigenvalue of is derived, and can be seen as

Afc ~  (7r/c)- (2m+2) as k —» 00 (1.3.56)
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This is the same result as that provided by proposition 10, chapter IV, Ritter (2000).

For only m  =  1 is considered. Using the formula provided above, it is easily

shown that the covariance function for X \  is

K \(s , t )  = ^min(s, £)2max(s, t) — ^m in(s , £)3 (1.3.57)
^ U

Hence the corresponding integral equation f* K}(s,t)<f>(s)ds = A0(t) is expressed as

J  ~  +  J  ( ^ s “  ^ t 3)<j>(s)ds =  A0 (*) (1.3.58)

Differentiating equation 1.3.58 successively, we obtain

</>M =  (1.3.59)

w i t h  t h e  b o u n d a r y  c o n d i t i o n s

^ = > ) = S ^ = l ^ = o (L3-6°)
The real solution to the differential equation 1.3.59 with the boundary condition 

1.3.60 is

(p(t) = C i s i n h ( ^ j - )  + c 2 c o s h ( - ^ - )  +  c 3s i n ( - ^ - )  +  c 4c o s ( - ^ - )  (1.3.61)
A4 A 4 A 4 A 4

The boundary conditions imply

0(0) — 0 =r> c2 T  c4 =  0

~~0(O) =  0 => cl +  c3 =  0
<j2  ̂ 1 1 1
— 0 (1) =  0 => cisinh(— ) +  c2cosh(— ) -  c3sin(— ) -  c4cos(—3-) =  0 
atz A 4 A 4 A 4 A 4
d3 1 1 1 1
— 0(1) =  0 => C iC o s h (— ) +  c 2s i n h ( — ) -  c 3c o s ( — ) +  c 4s i n ( — ) = 0 
at6 A 4 A 4 A 4 A 4
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Substitute C3 —c\ and C4 =  —C2 into ŝ<j>( 1) =  =  0.

ci[sinh(-?r ) +  sin(-V)] +  c2[cosh(-^) +  cos(-\-)] =  0
A 4  A 4  A 4  A 4

Ci[cosh(-r) +  cos(-j-)] +  c2[sinh(-T) -  s in (-T)] =  0 
A 4 A 4 A 4 A 4

Or equivalently,

Hence,

„ cosh(^r-) +  cos(-V)
S i   ________ A 3 __________  A3

c2 sinhf-V) +  sin(-V)A? A3
n sinh(-V) — sinf-V)Si   A3   A3

c2 cosh(-V) +  cos(^r)
A3 VA3 X

cosh(^r) +  cos(-V) sinh(-V) — sin(^r)
________A3___________ A3___  A3___________ A3

sinh(-V) 4- sin(-V) cosh(-V) +  cos(^r)
A3 VA3 7 vA3 y vA3 y

(1.3.62)

Simplifying equation 1.3.62 results in

1 +  cosh (-i-) cos (—r) =  0 (1.3.63)
A 4 A 4

Hence, the eigenvalues for Xj(£) are obtained as real solutions of the equation

1 +  cosh(-V)cos(-V) =  0, or 1 +  cosh(xfc)cos(xfc) =  0, where Xk = -V. Using the 
^  a*

Taylor expansion of cosh(x)
\ 3  \ 3 \ 3Afc Afc Afc

00
cosh(:r) =  T^Tj =  1 +  K x ) > (1.3.64)

»=o '  1' '

where
00 x 2* 00

/i(z) =  ——r and lim^oo/ifa;) =  lim ^oo ^  — -
i= i  W  i= i

According to remark 1.2.3, limfc.+ooAfc =  0. Since Xk = -V, £fc —> 00 is equivalent to

Afc —> 0 when k —> 00.
a3Afc

=  00
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At the same time, according to equation 1.3.63,

cos(xk) =
- 1 1

(1.3.65)cosh(a;fc) 1 +  h(xk)

Therefore

cos(xk) —> 0 4^ cos 0 when k —> oo (1.3.66)

This is equivalent to
4

when k oo (1.3.67)

Remark 1.3.4. All the covariance functions which have been discussed as examples in 

this section satisfy the so-called Sacks-Ylvisaker Regularity conditions. These were in

troduced by Sacks and Ylvisaker in a series of papers (see, Sacks and Ylvisaker (1966), 

Sacks and Ylvisaker (1968), Sacks and Ylvisaker (1970a) and Sacks and Ylvisaker 

(1970b)). The essential idea of Sacks-Ylvisaker condition is to ensure that the pro

cess has no quadratic mean derivative. Typical examples on kernels of such processes 

are

The above class of kernels was also called by Ritter (See Ritter (2000)), Sacks- 

Ylvisaker conditions of order r = 0. Ritter extended the idea of Sacks-Ylvisaker 

condition to order r > 0. Typical examples of processes with kernels satisfying Sacks- 

Ylvisaker condition of order r > 0 are the r-integrated Brownian motion of the first 

type and of the second type. Ritter further developed an important theorem for the 

behaviour of eigenvalues in the Sacks-Ylvisaker family. He proved that if a process 

with the covariance kernel K  satisfies Sacks-Ylvisaker conditions of order r  E A, the

min(s,t), min (s,t) — st, 1 +  min(s,t),

i ( l  -  | s - * | ) ,  ^exp(—|s — t\)
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asymptotic behaviour of the eigenvalue A» is

Ai «  (m) (2r+2) (1.3.68)

The asymptotic behaviour of the eigenvalues from equation 1.3.68 for the Sacks- 

Ylvisaker family of order r is a general result. Ignoring the constant term, equation 

1.3.56 and equation 1.3.54 for the eigenvalues of the r-integrated Brownian motion of 

the first type and of the second type respectively match equation 1.3.68 when r  > 0. 

When r  =  0, A* ~  This matches our previous analysis on the eigenvalues of the 

Brownian motion, the Brownian bridge and the Ornstein-Uhlenbeck process ignoring 

the constant term.

1.4 The spatial Karhunen-Loeve expansion

In certain fields, such as geostatistics and weather forecasting, researchers are in

terested in the multivariate Karhunen-Loeve expansion. Multivariate in this section 

refers to multivariate time, and univariate state. This concept of multivariate is dif

ferent from that in chapter 5, where multivariate refers to multivariate state, but 

univariate time. The multivariate time and univariate state Karhunen-Loeve expan

sion is also called the spatial Karhunen-Loeve expansion.

Let X ( t )  E H x  be a spatial process, where multivariate time t  is a vector time 

and t  6 T  =  T] x T2 x ■ • • x 7^. To be more clear, X ( t )  can be written down as 

X [ t i , 2̂ j ■ ■ ■ >£d)j where U E 7*, 1 < i < d. Its corresponding covariance function 

between s  E T  and t  E T  can then be represented as

(1.4.1)
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For the Karhunen-Loeve expansion of X (t), it follows directly from the univariate 

Karhunen-Loeve expansion. We need to solve the integral equation f T K (s, t)0(s)ds = 

A0(t), which is equivalent to the following equation.

j COv[Ĵ («Si, S2 1 1 S(ij, X  (ti , £2 5 ) ^d)\0(^1) 2̂ 5 ; Sd)dSidS2 ' ' ' dsd
rd

— ^<f>(tl,t2, • • • ,td)

where A and 0(£ i,t2, ■ ■ • , i d) are the corresponding eigenvalue and eigenfunction re

spectively. Since the eigenfunction is orthogonal, it should satisfy the orthogonality 

condition f T <t>i(t)<f>j(t)dt = 6ij, which is equivalent to the following equation.

/  <t>i{tu t2, ' "  , td)(pj{tut2i-• • , t d)dtidt2 - • • dtd = Sij (1-4.2)
Jrd

Then the Karhunen-Loeve expansion for X ( t )  is X( t )  =  JT»>i which

is equivalent to

X ( t u t2, • • • , t d) =  ^ 2  •• • , t d)£i , (1.4.3)
i> 1

where {^} is a series of independent process with mean 0 and variance 1.

In general, the analytical solution to the spatial process X (t) is very difficult to 

obtain, since the Fredholm integral equation involves d-times integration. However, 

for a certain class of covariance function, which is separable, i.e. for si}ti £ %

d d

K{  S,t) =  COv[X(si,S2, • • ■ ,Sd),X(t1, t 2, • • • , t d)] = JJcOv[X(Si), X(*i)] =  Y l K {siiU)
i=  1 i—1

the eigenvalue and the eigenfunction for X(t )  are also separable. Both are the product 

of their univariate counterparts in X(ti),  1 < i < d. This result is summarised in 

theorem 1.4.1.
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T h eo rem  1.4.1. Let X (t) G Hx be a spatial process, where t  is a vector time and 

t  G T  =  Ti x T2 x • • • x Td. Assume that the covariance function K (  t, s) is separable, 

and the univariate Karhunen-Loeve expansion for X( ti) ,  ti £ %  is

Proof. Assume the above eigenvalues and eigenfunctions are the solutions, then it 

only needs to be shown that the orthogonality of the eigenfunctions and that both 

satisfy the Fredholm integral equation. Due to the one-to-one relationship between 

the Fredholm integral equation and the Karhunen-Loeve expansion, the expansion 

listed above for X (t) can then be proved. For t j , S j  G 7j and i j  G N,  1 < j  < d

k> 1

Then the multivariate Karhunen-Loeve expansion for X (t) is

X(t )  — X(t i ,  t2, • • • , td) — \/~^k<{>k(ti,t2, • • • , id)6fc (1.4.5)

where
d d

Xk = n  4*k{t\, t2, • • • , td) =  Y [  ij e  N,  1 < j  < d

cov[X(5i, s2, • • ■ , sd) , X ( t 1, t 2l - ■ ■ ,td)](f>k(si ,S2 r - -  , sd)dsids2 ■ ■ ■ dsd

j —i. j j=s.
d d

= [ r r a n ^ M ]
3 =  1 j = 1

Also, for k \ , k 2, m j , r i j  G IV, 1 < j  < d and
d d

(f>k1(suS2,--- , s d) =  , sd) =  n ^ ( si) ’ (L4-6)
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the orthogonality condition can be proved, since

I $k\ (^11 ^2; i ^d)(Pk2 (^1) ^2) i Sd)dSidS2 ' ' ' dSd 
Jtj

d  d

n ^ w n  (j){ti(sj )dsids2- ■ - dsd

'Ti j t 2 JTd
d

Ti T2 Td
d

= ni l =i f -
j=

= ^k\ ,/C2
3 =  1 Tj 3 =  1

Hence the eigenfunctions are orthogonal. Together with eigenvalues, they satisfy the 

Fredholm integral equation. □

Example: T he Brownian sheet in [0,1]

The Brownian sheet X (t, s), £, s E [0,1], is a biparameter Gaussian random field with 

mean 0 and covariance function

cov[X(£i, Si), X ( t 2, 52)] =  min(si, s2)m in(t1, t2) (1.4.7)

It can be seen from the covariance function that in the two coordinate directions, 

a slice of the Brownian sheet looks like a Brownian motion multiplying by a constant. 

Since the covariance function is separable, we can use the result of the univariate 

Brownian motion to express the Karhunen-Loeve expansion for the Brownian sheet.

X (£, s) = ^ 2  s)£fc (1.4.8)
fc>i

where ~  i . i .dN(0,1) and

16 1 1  
h  =  [(2i -  l ) V ] [ ( 2 j  -  1 ) V \ ' M M )  =  2 Sin[(i -  -)irt] sin[(j -  - ) t t s ]  i , j >  1

(1.4.9)



Chapter 2 

Computational M ethods

As explained in section 1.2, chapter 1, in order to derive the Karhunen-Loeve ex

pansion for the stochastic process {X ( t ) , t  e T } ,  it is often necessary to solve the 

Fredholm integral equation

where K ( s , t ) is the covariance function for X (s) and X ( t )

However, the analytical solution to the integral equation only exists for particular 

covariance functions. Numerical solutions often have to be sought in practice. This

expansion method. The integral method proves to be computationally easy and quite 

fast (Ramsay and Silverman (1997)). However, it does not treat the eigenfunction as a 

real function, since it only discretises the time interval T  into a finite number of small 

intervals and approximates the eigenfunction interval by interval. The expansion 

method, on the other hand, expands the eigenfunction as a function using certain 

bases. W ith suitable basis functions, the expansion methods are computationally 

efficient and provide quite good approximations.

(2 .0 . 1)

chapter deals with two commonly used numerical methods, the integral method and

40



41

2.1 Integral m ethod

This method focuses on a direct approximation for the integral, i.e.

p \  n + 1

/  f{t)dt  ~  (2 .1 .1)
i= 0

To use the formula, we only need to know the discretised points U (0 =  t0 < t\ < 

t2 < • • • < t n < tn+1 =  1 and n is the total number of these points) and the weights

UJi.

A simple example is to discretise the integral range [0,1] into equally spaced

intervals, i.e. tj+i — tj = h = ^ y ,  0 <  j  < n. The length of the interval h is usually

chosen to be very small and n very big, for accuracy. For each /(£*), the weights Wi 

are the same, i.e. W{ = This is called the uniform scheme. Under the uniform 

scheme,
n \  i n + l

/  f ^ dt ”  r z "9 S  (2 1 -2)Jo n +  * i=0

Another frequently used integral numerical scheme is the trapezium scheme, it is

also based on n equally spaced points. Assume that t j+1 — tj = h = 0 < j  < n,

then

[ f{t )dt  «  + f ( t i+1))
i= 0

=  M ^ + / ( < l )  +  - - ' + / ( « n - l )  +  ^ % tl l )

Other approaches, like the Gaussian quadrature approximation (see, for example, 

Cheney and Kincaid (2007), for detail on other numerical methods), greatly increase 

the accuracy of the numerical calculation. However a special placement of the discre

tised points needs to be considered, which is often not suitable in practice. In practical
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applications, observation points are usually equally spaced, for example when data 

arise as a time series.

The Fredholm integral equation can be approximated as follows:

K(s,  t)fa(t)dt «  ^  K{sfaj )fa{tj )ujj =  Ai<f>i(s)

Furthermore, the orthogonality of the eigenfunctions fa means that

(2.1.3)

(2.1.4)

When written in the matrix form, the above integral equation can be written as

K W fa  = fafa (2.1.5)

where

K  =

W  =

(  cov(X(t0) , X ( t 0)) 

co v (X ( t i ) ,X ( t0))

cov(X(t0), X( ti) )  

cov(X(ti), X f a ) )

w0 0

0 Wi

y o o • • • wn+1 y

fa(t l)? ) 4*i

cov(X(t0) , X ( t n+l)) \  

cov (X ( t i ) ,X ( tn+1))

\cov(X( tn+i ) , X ( t 0)) cov(X(tn+i),X(ti))  ••• cov(X(tn+i) ,X ( tn+i)) J

Defining Ui = W l 2̂4>i, we obtain a symmetric eigenvalue problem of the form

W*KW*Ui = A iUi (2.1.6)

The vector fa is then recomputed via the inverse transformation fa — W  2m. Notice 

that using a uniform scheme, W  is simply where I  is the identity matrix, while
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using the slightly different trapezium scheme,

W  = (2.1.7)

0 0

0 0 n i
U 2(n+l) /

2.2 Expansion m ethod

Numerical methods, such as the Galerkin method (see, for example, Porter and Stir

ling (1990) for detail), usually employ certain basis function to expand the eigenfunc

tions up to M  terms. The advantage of the Galerkin method over the integration 

method is that the eigenfunction is treated as a function and the accuracy of the 

approximation can be controlled by choosing sufficiently many basis terms. The com

monly used basis functions are the trigonometrical functions or the wavelet functions.

A lgorithm  1: the Fourier m ethod

Using the Fourier basis to expand the eigenfunction is one of the first expansion 

methods that researchers have investigated. See, for example, Ghanem and Spanos 

(1991) and Huang et al. (2001). The calculation process is as follows.

Firstly, a set of M  adequate basis functions {0*(t), i = 1, 2, • ■ • , M }  is chosen. For 

the Fourier basis defined on [0,1], M  is chosen to be odd, so that the basis functions 

can be written down as

6i(t) = 1, $2CO =  cos(27r£), 9s(t) =  sin(27r£), • • • ,
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Then, the eigenfunction is expanded as a linear combination of the basis functions up 

to term M
M

=  Y . M k ®  =  0(t)TPi  =  Df6(t )  , (2-2.1)

where
k=1

A , M x l  j 5

while {difc} are the unknown coefficients for this expansion.

Substitute (2.2.1) into the integral equation on the zth eigenvalue and the zth 

eigenfunction,

[  K{s,t)4>i(s)ds = \i4>i(t) D j  f  K(s, t)6(s)ds = D f  \i6(t) (2.2.2)
Vo Vo

Integrate both sides of (2.2.2) with respect to t after multiplying both sides by 9(t):

Df f  [  K(s,t)6(s)6T{t)dsdt = D j \ i  [  9(t)9T(t)dt (2.2.3)
Vo Vo Vo

Using the first p eigenvalues and eigenfunctions, equation 2.2.3 can be written in 

matrix form:

DA = AD B  <s> A D t  =  B D t A (2.2.4)

where

A = (  K(s, t)9(s)9T(t)dsdt (Ajk = [  [  K(s,t)9k(s)9j(t)dsdt) 
Vo Vo Vo

b  = f  e(t)eT(t)dt {Bj k = I ek{t)ej{t)dt)
Vo Vo

f  D p 0 • 0 ^

D p x M
D \

i A pxp
0 to ■ 0

Dl ) 1 ° 0 •• __
_
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This is an example of the so-called the generalised algebraic eigenvalue problem 

or the generalised eigenvalue problem. See, for example, chapter 12, Laub (2004) 

for details. Since A  is a symmetric positive definite m atrix and B  is a diagonal 

positive matrix, the generalised eigenvalue problem can be solved in the following 

way. Express B  as B ^ B ^ ,  where B^  is the usual symmetric square root, then

AD t = B * B * D T A (2.2.5)

Multiply both sides of equation 2.2.5.

B - * A B ~ * B * D t = B * D Th  (2.2.6)

Assume E  = B * D T, then equation 2.2.6 can be simplified to

B ~ sA B ~ * E  = EA  (2.2.7)

The eigenvalue A and the eigenfunction E  for B~^AB~^  can now be computed using 

equation 2.2.7. Then convert E  to D via D = E TB~^.

Although using the Fourier basis provides more flexibility than the integration 

methods, the accuracy in estimating the eigenfunctions is worse (see chapter 2, 

Ghanem and Spanos (1991)). Moreover, in practice it takes a relatively longer com

putational time, even for small M.

After obtaining the zth eigenvalue A * and the zth eigenfunction <&(£), we can now 

construct the truncated covariance function at order p.

p

K(s,  t ) = J 2  M s ) M t )  = <l>(s)TW ( t )  = 6{s)TD TKDe{t) , (2.2.8)
i=  1

where

0Mpxi =  > <£pM) {2.2.9)
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A lgorithm  2: the Haar wavelet m ethod

Using the wavelet basis to expand the eigenfunctions was mentioned in Ramsay 

and Silverman (1997) and detailed calculations appear in Phoon et al. (2002b) and

Phoon et al. (2002a). Here, the algorithm from Phoon et al. (2002b) is adapted to

both the stochastic process satisfying Sacks-Ylvisaker condition and the stochastic 

process with the smooth covariance function, such as the squared exponential kernel. 

For simplicity, only the bounded interval [0,1] is considered again. Any function /  

between [0, 1] can be expanded using the wavelet basis function ipi(x)

oo

/ ( r )  =  a0 x l +  ^ a ^ j ( r )  (2.2.10)
2 = 1

The Haar wavelet is the simplest wavelet basis function in the Daubechies’s family. 

See, for example, Nievergelt (1999), for details of the Daubechies’s family in wavelets. 

The Haar wavelet is defined as

1 0 < x < \

# * ) =  { - 1  \ < x <  1 (2.2.11)

0 otherwise

A family of the orthogonal Haar wavelets can be constructed through shifting the 

above i/j(x ), i.e. for j, k E Z

^ j A x )

1 k2~j < x < 2~j ~l +  k2~i

- 1  2-J"1 +  fc2-J' < x <  2~i +  £2-2 (2.2.12)

0 otherwise

They are orthogonal because

rl
I 'tpj,kfa')Tpm,n(%')d'X — 2 ^5j,r 
'o
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Now, M  — 2n orthogonal basis functions on [0,1] can be constructed in the following

way

ipi =  1; tyi =  ipj,k(x) i =  2J +  k +  1; j  = 0, 1, • • • , n  -  1; k =  0, 1, ? • • 2j -  1

(2.2.13)

Hence the eigenfunction and the covariance function can be expressed using the above 

basis function, i.e.
M

&(*) = ^ d i k ^ k i t )  = ^ T{t)Di (2.2.14)
k=l

M  M

K(s,  t) = E E -  mn^m(s)^n(t) =  ^ ( s ) 7̂ ^ * )  (2.2.15)
7Tl=l 71=1

where

^ W L i  =  ( ^ i W,  ••• ,  V'm W )

^i,Mx 1 ^^il) ) ^iM j

A-MxM — {aij}

The matrix A  can be derived through the 2D wavelet transform. In order to 

perform the wavelet transform, M  time points need to be chosen at U — 1 < f <

M, and M  should be a number a power of two. In application, when the covariance

function is known, M  points satisfying the above conditions can always be chosen.

The integral equation involving the zth eigenvalue and the ith eigenfunction can 

now be written down as

AM t ) =  [  K(s,  t)<f>i(s)ds (2.2.16)
Jo

The expressions of (f>i{t) and K(s , t )  in equation 2.2.14 and equation 2.2.15 respec

tively are substituted into equation 2.2.16.

\ i V T(t)Di = tyT( t)AHDi , (2.2.17)
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where

H =

hi 0

0 /i-2

\  0 0 • • • Hm f

hi = l ,h i  = 2 - \

z =  2J +  /c +  1, j  =  0, 1, • • • ,n  — l and k = 0, 1, • • • 2j — 1

Combining the first p eigenvalues and eigenfunctions, we can express equation 

2.2.9 in matrix form.

A p x p ^ p x M ^ W i U x l  — D p Xm H m x m A m x  m 'I 'W a /x  1 (2.2.18)

where

Dpx M

( D t \
D \

KD p )

Apxp —

( \ x 0 

0 a2

0 ^

0

0 0 • • • A

(2.2.19)

v)

Equating the coefficients for T(£), we obtain AD  =  DHA.  Multiply by H 2 on both 

sides,

ADH* = DH*H*AH* &  AD  — D A  , (2.2.20)

where D = D H s, A  = H ^ A H ^  and i  is a symmetric matrix. Solving equation 

2.2.20 results in M  eigenvalues and M  orthogonal, linearly independent eigenvectors. 

The eigenfunction can now be written as

(2 .2 .21)

In terms of the truncated covariance function.

K(s , t )  = 'Z/(s)TD TAD<H{t) (2 .2 .22)
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2.3 Num erical exam ples

The O rnstein-Uhlenbeck process

The covariance function for the Ornstein-Uhlenbeck process is given in chapter 

1, |^exp (—/?|t — s\). For simplicity, it is further assumed that (3 = 1 and p =  \/2. 

So that the covariance function is exp(—\t — s|). Figure 2.1 plots the solution to 

the eigenvalues. From section 1.3, chapter 1, it is known that for the eigenvalues, 

cot(ic) =  is needed to be solved, and then we convert w to A using the formula 

A =  ^r^i- Since the negative and the positive solution for w produce the same value 

of A, figure 2.1 only covers the positive part of w. In the left plot of figure 2.1, the blue 

line plots cot(w), while the red line plots It can been seen that at each interval

[A;7t, (k +  1)7r], k G N, there exists an intersection, which represents one solution to 

w. Since k is an integer, the total number of intersections should be countable and 

the bigger the k is, the closer is the intersection to kn. The right plot of figure 2.1 

plots A =  which reduces to zero very quickly. For positive ic, the relationship

between A and w is one-to-one. One can see in this way how a countable number of 

eigenvalues is obtained.

Figures 2.2, 2.3 and 2.4 provide an idea of the performance of the analytical 

solution to the covariance function exp(—\t — s|) under different orders. This is 

helpful in suggesting a suitable order for the truncated Karhunen-Loeve expansion. 

Figure 2.2 shows the convergence in the Karhunen-Loeve expansion compared to the 

targeted covariance function. Define the time lag as h = \t — s\. Since the Ornstein- 

Uhlenbeck is a stationary process, we only need to plot the covariance for the targeted 

or the truncated covariance using the Karhunen-Loeve expansion versus h to study 

the convergence. It can be seen that the difference between order 10 and order 30 is
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Figure 2.1: Graphical solution to cot(io) =  (Left) Blue line y = cot(io); Red
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much bigger than that of order 30 and order 50.

Figure 2.3 serves to check stationarity for the different starting point t, 0 <  t < 0.5

under the same time lag h =  0.5. Theoretically, the targeted covariance function 

without the truncation should be a constant under the same h whatever the starting 

point t is. It should also be expected that the better the approximation using the 

truncated Karhunen-Loeve expansion is, the closer the truncated covariance is to a 

constant whatever the staring point t is. Again, it can be seen from the plot that the 

higher the order is, the better is the performance of the approximation. It is clearer 

from this plot that there is some improvement when the order is increased from 30 

to 50, although not very big.

Figure 2.4 explains the cumulative expected variance preserved in the expansion. 

The cumulative expected variance is defined as

A
(2-3.1)

2 ^ i = l
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Convergence

target
order=10
order=30
order=50

0.9
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0.3
0 0.2 0.4 0.6 0.8 1

time lag

Figure 2.2: The analytical performance of the truncated Karhunen-Loeve expansion 
for the kernel exp(—\t — s|): covariance function versus time lag.
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Stationarity with |t-s|=0.5
0.913

target
order=10
order=30
order=50

0.912

0.911

0.91

0.909

E 0.908

0.907

0.906

0.905

0.904

0.903
0 0.1 0.2 0.3 0.4 0.5

starting time

Figure 2.3: The analytical performance of the truncated Karhunen-Loeve expansion 
for the kernel exp(—\t — s|): stationarity checking when \t — s\ = 0.5 for different 
starting points.
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Cumulative Expected Variance
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order p

Figure 2.4: The analytical performance of the truncated Karhunen-Loeve expansion 
for the kernel exp(—|t — s|): cumulative expected variance versus order in the trun
cated Karhunen-Loeve expansion.
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If the original stochastic process X(t)  and the truncated stochastic process X p(t) 

using the truncated Karhunen-Loeve expansion at order p are expressed respectively 

as
oo p

— X /  x p ( t )  — (2.3.2)
i = 1 i = l

where & is i.i.d. with mean 0 and variance 1, the integrated variance using the

untruncated expression and the truncated expression can be calculated as

OO n P P

Y ] ^ i =  Var (X{t))dt Y ] X  i =  Var (Xp(t))dt (2.3.3)
J t  i = i  J t

Therefore, the cumulative expected variance can also be expressed as

f T V w ( X p{t))dt
(2.3.4)

f T Vai(X(t))dt

For the Ornstein-Uhlenbeck process on [0,1], fg Var(X(t))dt  = 1. Hence the cumu

lative expected variance is only the numerator of equation 2.3.4, fg Var(Xp(t))dt. It 

can be seen that the rate of the change of the cumulative expected variance decreases 

when the order p increases. When the order p approaches 50, the cumulative expected 

variance is quite close to 1.

Now, the analytical solution to the eigenvalues is compared with that derived from 

the integral method, the Fourier method and the Haar wavelet method respectively. 

The result is summarised in table 2.1. The error in the table is calculated as follows.

Numerical Solution Using Certain Numerical Scheme — Analytical Solution
Error =

Analytical Solution
(2.3.5)

From table 2.1, it can be seen that in the integration methods, the trapezium 

scheme performs much better than the uniform scheme. The error dramatically de

creases under the same number of points. The reason for using 11 basis functions in

xl00%
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1st 2nd 3rd 4th 5th
Analytical 0.7388108 0.1380038 0.0450885 0.0213289 0.0122789

Uniform in — 200) 
Error

0.7378086
0.14%

0.1384447
0.32%

0.0452880
0.44%

0.0214326
0.49%

0.0123420
0.51%

Trapezium (n = 200) 
Error

0.7388105
0.00%

0.1380060
0.00%

0.0450919
0.01%

0.0213327
0.02%

0.0122828
0.03%

Fourier (M =  11) 
Error

0.7388075
0.00%

0.1299146
5.86%

0.0451686
0.18%

0.0198488
6.94%

0.0122810
0.02%

Haar (M — 256) 
Error

0.7388147
0.00%

0.1380069
0.00%

0.0450912
0.01%

0.0213316
0.01%

0.0122815
0.02%

Table 2.1: The first five eigenvalues comparison among different numerical schemes 
for the kernel exp(—\t — s|).

the Fourier method is that it is computationally expensive for higher orders. It takes 

the computer a longer time than the time involved in any other method, even using 

11 basis functions. Using the Fourier basis, the result is quite volatile, with the error 

as big as 5.86%, which is the biggest among all the methods. Using the Haar wavelet 

method, on the other hand, is computationally fast, although 256 basis functions are 

used. Its error is the smallest among all the methods. Although the results from the 

trapezium integral method and that from the Haar wavelet method are quite good 

and close to each other, it is the Haar method that regards the eigenfunction as a 

function. The accuracy of the Haar wavelet method can be controlled by the number 

of the basis functions involved.

Since the Haar wavelet method provides the result both computationally reliable 

and accurate, we take a further look at its result in terms of different number of basis 

functions involved. This result is shown in table 2.2.

It can be seen that the error dramatically decreases when the order needed for 

the expansion of the eigenfunction is doubled from 8 to 16. At the order of 16, the 

error is already quite close to that derived from the Fourier method. Although using
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1st 2nd 3rd 4th 5th
Analytical 0.7388108 0.1380038 0.0450885 0.0213289 0.0122789

Haar (M=8) 
Error

0.7428125
0.54%

0.1412251
2.33%

0.0480043
6.47%

0.0242416
13.66%

0.0153110
24.69%

Haar (M=16) 
Error

0.7398109
0.14%

0.1388036
0.58%

0.0458001
1.58%

0.0220190
3.24%

0.0129669
5.60%

Haar (M=32) 
Error

0.7390608
0.03%

0.1382034
0.14%

0.0452653
0.39%

0.0214992
0.80%

0.0124469
1.37%

Haar (M=64) 
Error

0.7388733
0.01%

0.1380537
0.04%

0.0451326
0.10%

0.0213713
0.20%

0.0123207
0.34%

Haar (M=128) 
Error

0.7388264
0.00%

0.1380162
0.01%

0.0450995
0.02%

0.0213396
0.05%

0.0122893
0.08%

Table 2.2: The first five eigenvalues comparison of the Haar wavelet scheme using 
different number of basis functions for exp( — \t — s|).

the order 32, 64 and 128 provide slightly worse results than that from the integral 

method, especially the result using the trapezium scheme, it takes less computational 

time. Hence in practice, when the covariance function is known, it is reasonable to 

use lower orders when applying the Haar wavelet method.

Now consider the eigenfunctions. In the integration method, only the trapezium 

scheme is considered, since it is in general better than the uniform scheme.

The first two eigenfunctions in figure 2.5 and figure 2.6 correspond to the first 

two biggest eigenvalues. It can be seen that both the trapezium integration method 

and the Haar wavelet method perform quite well. The eigenfunctions from these two 

methods are almost the same as those from the analytical method. However, the 

eigenfunctions derived from the Fourier method are not smooth and exhibit oscilla

tion. This oscillation might be caused by the cyclical variation in the trigonometric 

function. The oscillated eigenfunctions might cause problems in the reconstruction 

of the covariance function. Now the values of the first two eigenfunctions at the
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Analytical Solution Integration Trapezium Rule (200 points)

0.9
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0 0.5 1

0.9

0.8
0 0.5 1

Fourier Method (11 basis) Haar Wavelet Method (256 basis)
1.1

1

0.9

0.8
0 0.5 1

1.1

1

0.9

0.8
0.50 1

Figure 2.5: Comparison of the first eigenfunction between the analytical solution and 
three other numerical schemes for exp(—\t — s|).

beginning few time points are listed in table 2.3 and table 2.4.

Notice that although both the Haar wavelet method and the integral trapezium 

method provide similar results, the value provided by the integral trapezium method 

is more accurate. The difference between the analytical value and the value by the 

integral trapezium method is of the order 10-6, while the difference between the 

analytical value and the value by the Haar wavelet appears at around 10-3. This 

small difference 10“3 might affect our analysis when the accuracy needed is smaller
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Analytical Solution Integration Trapezium Rule (200 points)
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Fourier Method (11 basis) Haar Wavelet Method (256 basis)
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Figure 2.6: Comparison of the second eigenfunction between the analytical solution 
and three other numerical schemes for exp(—\t — s|).

than or equal to 10-3. For the Fourier basis, the result is quite unstable. For the 

second eigenfunction listed in table 2.4, the error in the first few time points could be 

as big as above 100%, while the error using other methods are less than 1% for the 

same time points.

Further checking of the eigenfunctions can be implemented by introducing two
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Time 0 l
202

2
9m .

3
202

4
202

Analytical 0.8516555 0.8558746 0.8600575 0.8642040 0.8683141
Trapezium (n =  200) 0.8516566 0.8558757 0.8600587 0.8642053 0.8683154

Error 0.00% 0.00% 0.00% 0.00% 0.00%
Fourier (M =  11) 0.8672837 0.8675013 0.8681515 0.8692274 0.8707174

Error 1.84% 1.36% 0.94% 0.58% 0.28%
Haar (M =  256) 0.8533158 0.8566203 0.8599025 0.8631624 0.8696145

Error 0.19% 0.09% 0.02% 0.12% 0.15%

Table 2.3: The first eigenfunction comparison for the first few time points for 
exp(-|* -  s|).

Time 0 l
202

2
202

3
202

4
202

Analytical -1.2791384 -1.2852884 -1.2910091 -1.2962986 -1.3011553
Trapezium (n = 200) -1.2791395 -1.2852898 -1.2910109 -1.2963008 -1.3011579

Error 0.00% 0.00% 0.00% 0.00% 0.00%
Fourier (M =  11) 0 -0.147933 -0.2944067 -0.4379873 -0.577291

Error 150.19% 132.89% 115.88% 99.32% 83.36%
Haar (M 256) -1.2816094 -1.2863361 -1.2908039 -1.295006 -1.3026096

Error 0.29% 0.12% 0.02% 0.15% 0.17%

Table 2.4: The second eigenfunction comparison for the first few time points for 
exp(—\ t - s \ ) .
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h,i 1 2 3 4 5 6
Trapezium 

Fourier (M =  11) 
Haar (M =  256)

0.0000029
0.0000827
0.0000360

0.0000067
0.0194733
0.0001514

0.0000075
0.0000411
0.0002740

0.0000074
0.0231734
0.0003003

0.0000082
0.0005216
0.0001275

0.0000074
0.0141584
0.0004956

Table 2.5: The difference of the eigenfunction between the analytical solution and the 
numerical solutions for the Ornstein-Uhlenbeck process in terms of Zi measure.

h ,i 1 2 3 4 5 6
Trapezium 

Fourier (M =  11) 
Haar (M — 256)

0.0000031
0.0029384
0.0004141

0.0000073
0.2640940
0.0004141

0.0000144
0.0048725
0.0025289

0.0000219
0.3074980
0.0025289

0.0000295
0.0052781
0.0049991

0.0000370
0.3409438
0.0049991

Table 2.6: The difference of the eigenfunction between the analytical solution and the 
numerical solutions for the Ornstein-Uhlenbeck process in terms of Z2 measure.

measures Zi and Z2, which are defined as

Zl.i —
3 =  1

h ,i —
\

J  E w f e )  -  m ? ,
j=1

where and represent respectively the analytical solution to the zth eigen

function and the approximation of the zth eigenfunction using the numerical method 

at time point i,-, i > 1 and 1 < j  < n. Using a statistical interpretation, li can be 

treated as a measure for the bias, since its power in the summation is 1, while Z2 can 

be treated as a measure for the standard deviation, since its power in the summation 

is 2. In this example, n = 202 and tj = ^ y ,  1 < j  < n.

Table 2.5 and table 2.6 show li and /2 of the first six eigenfunctions using three 

different numerical methods. In terms of Zi, the bias measure, the trapezium integral
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method is the best, since all its values of l\ are between 10-6 to 10-5. The second 

best numerical scheme is the Haar wavelet method, since most of its values of l\ are 

between 10-4 to 10-3 . The difference between these two methods is again around 

10-3, which matches the result from table 2.3 and table 2.4. The result from the 

Fourier method is not stable, since l\ for its first eigenfunction is as small as 8 x 10-5, 

while l\ for its second eigenfunction is around 2 x 10-2 . I2 , the standard deviation 

measure, provides similar information to l\. Although the trapezium integral method 

is better than the Haar wavelet method in terms of both li and Z2, the Haar wavelet 

method takes less computational time. Again, the Haar wavelet method also treats 

the eigenfunction as a function expanded by the wavelets, while the eigenfunction 

from the integral based method depends on the discretisation of the interval. Hence, 

when the covariance function is known, the Haar wavelet method is still preferred in 

the following analysis.

Figure 2.7 shows the reconstruction of the covariance function under three different 

schemes with order 11. The truncated covariance function K(s,  t ) between time s and 

time t is expressed as
11

AT11 (5, t) = ^ 2  K<t>i(s)(l)i{t) (2.3.6)
i=  1

For the integral method, the Fourier method and the Haar wavelet method, the key 

equations for deriving the eigenvalues and the eigenfunctions are equation 2.1.5, equa

tion 2.2.4 and equation 2.2.20 respectively. 11 is chosen since it is computationally 

doable for the Fourier basis and a universal order is preferred when comparing dif

ferent numerical schemes. The analytical covariance structure is also provided for 

comparison. It can be seen that the Fourier basis method provides the worst result,
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with variations almost everywhere. Again, this is due to the property of the trigono

metric function itself. More order can be used to solve this problem. However, it will 

dramatically increase the computational time. The trapezium integration method

the covariance reconstruction using these two numerical methods and the analytical 

covariance function is further compared using the measure l\ and 1%, which are defined 

as

where cov[X(ti), X(tj)] represents the analytical covariance function between X(U)  

and X ( t j ), while covp[X(U), X(tj)] represents the covariance function using the nu

merical approximation between X(U)  and X(tj ) .  The subscript p is the truncation 

order for the Karhunen-Loeve expansion when approximating cov^,[X(tj), Y(tj)\. The 

construction of and ^ is very similar to that of l\ and /2 , hence the statistical 

interpretation of l\ and ZJj is also the bias and the standard deviation respectively. In 

this example, again, n =  202 and tj = 1 < j  < n.

Table 2.7 shows and /\ using the trapezium integral method and the Haar 

wavelet method for the truncation order 10, 20, 30, 40 and 50. The reconstruction 

from both of these two methods are quite good, since and l\ are generally very 

small. In terms of the bias measure, 11 using the trapezium integral method is 

roughly between 10-7 and 10—6, while using the Haar wavelet method is around 

5 x 10~5. It means that the bias using the integral trapezium method is smaller 

than the bias using the Haar wavelet method. In terms of /£» the standard deviation

and the Haar wavelet method provide the similar results. The difference between

n n
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lcLl , p 10 20 30 40 50
l\ p Trapezium 
l^v Trapezium

0.0000008
0.0040156

0.0000003
0.0013963

0.0000002
0.0007721

0.0000001
0.0005164

0.0000001
0.0003833

l\ p Haar 
1% _ HaarP

0.0000520
0.0041782

0.0000524
0.0018280

0.0000525
0.0014174

0.0000527
0.0012998

0.0000527
0.0012544

Table 2.7: The difference of the covariance between the analytical solution and the 
solutions from two numerical schemes for the Ornstein-Uhlenbeck process in terms of 

and lr> measure.

measure, l\ decreases when the order p increases, since the higher the order, the 

better the approximation, and therefore the less the variance. When p = 10, for 

the trapezium integral method and the Haar wavelet method is very close to each 

other. Both are around 4 x 10-3. However when p = 50, ^  using the Haar wavelet 

method, with value 1.25 x 10“3, is about three times as big as using the trapezium 

integral method, with value 3.8 x 10-4 . It shows again that the trapezium integral 

method performs better in terms of the standard deviation in the reconstruction.

From figure 2.7, another issue worth mentioning is that although both the trapez

ium integral method and the Haar wavelet method produce similar results, they do 

not perform well in the diagonal part of the covariance when p = 11. Since the 

Ornstein-Uhlenbeck process satisfies Sacks-Ylvisaker condition, it does not have con

tinuous first derivative in its covariance function, which is the reason for the peak in 

the analytical covariance. However, using numerical schemes with not enough order, 

this peak character can not be well-captured. One way of solving this problem is to 

introduce higher orders in the truncated Karhunen-Loeve expansion.

The Haar wavelet scheme is chosen as a representative numerical scheme to show 

how the higher order in the truncated Karhunen-Loeve expansion affects the diagonal
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part in the covariance function. Figure 2.8 shows the reconstruction using the Haar 

wavelet with four different order p. It can be noticed that the higher the order is 

in the model, the better the performance of the numerical scheme is in the “peak” 

diagonal part. It becomes sharper when the order is increased from 11 to 50. From 

50 to 100, the difference is not that obvious.

Integration Trapezium Rule (200 points)

0 0

Haar Wavelet Method (256 basis)

Analytical Covariance

0 0

Fourier Method (11 basis)

Figure 2.7: Comparison between the covariance of the analytical solution and the 
covariance reconstruction of three other numerical schemes with order 11 for exp(—\t— 
s\).

The squared  exponen tia l kernel e x p {—/3(t — s)2)
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Haar Wavelet: order=11

0 0

Haar Wavelet: order=50

Haar Wavelet: order=30

Haar Wavelet: order=100

Figure 2.8: Comparison of the covariance reconstruction under different order, using 
the Haar wavelet with 256 basis, for exp(—\t — s|).

The most often used covariance kernel in practice is probably the squared expo

nential kernel, also called the Gaussian kernel, expressed as exp(—(3{t — s)2). For 

simplicity, /3 is assumed to be (3 = 1. This means that the covariance function is 

exp(—(t — s)2). The analytical solution is very difficult to obtain for this covariance 

kernel. Some researchers assume Gaussian measure between 0 and 1, and then intro

duce Hermite polynomials to solve the problem. See, for example, Rasmussen and 

Williams (2005). Since only Lebesgue measure is used in this thesis, the analytical
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1st 2nd 3rd 4th 5th
Uniform (n = 200) 

Diff
0.8637518

0.13%
0.1271495

0.74%
0.0087074

1.74%
0.0003791

2.76%
0.0000122

4.27%
Trapezium (n =  200) 

Diff
0.8648371

0.00%
0.1262215

0.00%
0.0085601

0.02%
0.0003692

0.08%
0.0000118

0.85%
Fourier (11 basis) 

Diff
0.8614099

0.08%
0.1299146

2.93%
0.0455937
432.75%

0.0198488
5280.54%

0.0123127
105136.75%

S ta n d a rd
Haar (256 basis) 0.8648431 0.1262178 0.0085582 0.0003689 0.0000117

Table 2.8: The first five eigenvalues comparison among different numerical schemes 
for exp[—(t — s)2].

solution they derived is not really helpful to the current problem.

Table 2.8 provides the eigenvalue comparison among different numerical schemes. 

When comparing the eigenvalue, the result derived from the Haar wavelet method 

(256 basis function) is used as the standard. Since from the example in the Ornstein- 

Uhlenbeck process, the Haar wavelet method with M  = 256 has shown its accuracy 

in deriving eigenvalues. Similar to the “Error” in the Ornstein-Uhlenbeck process, a 

measure called “Diff” used in this example is defined as

Other Numerical Solution — Numerical Solution by the Haar Wavelet
Diff =

Numerical Solution by the Haar Wavelet
x 100%

(2.3.7)

Like the solution to the Ornstein-Uhlenbeck process, the performance of the 

trapezium integral method is very close to that of the wavelet method. The uni

form integral method provides a bigger difference in the eigenvalues compared to the 

wavelet method. In terms of the Fourier method, the approximation to the first two 

eigenvalues is not bad, since Diff is 0.08% and 2.93% for the first and the second eigen

value respectively. But from the third eigenvalue and onwards, Diff for the Fourier
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1st 2nd 3rd 4th 5th
S tan d ard : Haar (256 basis) 0.8648431 0.1262178 0.0085582 0.0003689 0.0000117

Haar (M=8) 
Diff

0.8662842
0.17%

0.1253201
0.71%

0.0080818
5.57%

0.0003062
17.00%

0.0000075
35.90%

Haar (M=16) 
Diff

0.8652013
0.04%

0.1259949
0.18%

0.0084399
1.38%

0.000353
4.31%

0.0000103
11.97%

Haar (M=32) 
Diff

0.8649315
0.01%

0.1261628
0.04%

0.008529
0.34%

0.000365
1.06%

0.0000115
1.71%

Haar (M=64) 
Diff

0.8648641
0.00%

0.1262047
0.01%

0.0085512
0.08%

0.000368
0.24%

0.0000117
0.00%

Haar (M=128) 
Diff

0.8648473
0.00%

0.1262151
0.00%

0.0085568
0.02%

0.0003688
0.03%

0.0000117
0.00%

Table 2.9: The first five eigenvalues comparison of the Haar wavelet scheme using 
different orders for exp[—(t — s)2].

method dramatically increases. In other words, using the Fourier method, the rate of 

the decrease of the eigenvalue is much slower than other methods. However, it must 

be noticed that the eigenvalues are already very small from the third eigenvalue and 

onwards using the Haar wavelet method and the first two eigenvalues explain more 

than 99% of the cumulative expected variance, i.e.

. 1 +  2 ■ =  A, +  A2 =  0.8648431 +  0.1262178 > 99% (2.3.8)
Jo e-t'-O2*

where the values to Ai and A2 are derived from the Haar wavelet method. Hence the 

bad performance from the third eigenvalue and onwards using the Fourier method 

might not affect its overall performance.

Table 2.9 takes a further look at the eigenvalue result provided by the Haar wavelet 

method with respect to different orders M, with the result by order 256 as the com

parison standard.

Again, for order M  = 64 and onwards, the values almost converge, since the 

relative difference is very small. The result from lower orders of the Haar wavelet
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Analytical Covariance

0 0

Fourier Method (11 basis)

0.5 I

Integration Trapezium Rule (200 points)

0.5

0 0

Haar Wavelet Method (256 basis)

0 0 0 0

Figure 2.9: Comparison between the covariance of the analytical solution and the 
covariance reconstruction of three other numerical schemes with order 11 for exp[—{t—
»n

method is still more reliable than that from the Fourier basis method, and again, 

computationally fast. However, in practice, when data can be sampled at any point 

on [0,1], higher order of the wavelet basis will be preferred, since it provides the result 

both accurate and computationally efficient.

Now the covariance function is reconstructed using the order 11 in the truncated 

Karhunen-Loeve expansion. Figure 2.9 shows the reconstruction. Since the first two 

eigenvalues explains about 99% of the cumulative expected variance, 11 should be a
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reasonable choice. As expected, the Fourier method does not perform very well, with 

oscillation everywhere. The covariance reconstructions from both the Haar wavelet 

and the trapezium integral method are very close to the analytical solution (without 

truncation). Another point worth mentioning here is tha t the squared exponential 

kernel is differentiable everywhere, which does not have any peak in the diagonal 

element of the covariance function. This is another reason that higher order is not 

required in the Karhunen-Loeve expansion to recapture the squared exponential ker

nel.

Table 2.10 provides a further check on the covariance reconstruction between the 

trapezium integral method and the Haar wavelet method using the measure l\ and the 

measure again. Since the first two eigenvalues explains about 99% of the cumulative 

expected variance, table 2.10 only shows the reconstruction for order 1, 2, 4, 6 and 8. 

In terms of /£, the bias measure, for the order 1 and 2, l\ using the trapezium integral 

method, with value 4 x 10-5 , is about four times as big as l\ using the Haar wavelet 

method, with value only about 10-5. However, when p is larger than 4, l\ using the 

trapezium integral method reduces dramatically, with resulting in about 5.8 x 10-16 

when p = 8, while remains between 10-5 and 10-4 using the Haar wavelet method. 

For 1%, the standard deviation measure, the result is still similar. When p is 1 and 2, 

using both methods is very close to each other. But when p is bigger than four, 

for the trapezium integral method reduces much faster than that for the Haar wavelet 

method.

Sim ulation

This thesis is not concerned with simulation but we now show briefly the appli

cation to simulation using the truncated Karhunen-Loeve expansion. For one sample
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/cb,P 1 2 4 6 8
Trapezium 

12 # Trapezium
0.0000448
0.1274479

0.0000448
0.0087160

3.2 x 10~9 
0.0000122

1.9 x 10-12 
6.6 x 10"9

5.8 x 10"16
1.9 x 10-12

l\ Haar 
Zo_ Haar

0.0000108
0.1274000

0.0000108
0.0088000

0.0000551
0.0009272

0.0000551
0.0009272

0.0000551
0.0009272

Table 2.10: The difference of the covariance between the analytical solution and the 
numerical solution for the process with the squared exponential kernel exp[—(t — s)2] 
in terms of measure and measure.

path of the Gaussian process, using the truncated Karhunen-Loeve expansion till 

order p , the truncated process can be expressed as

p

1 = 1

It can be observed that only p standard normal random variables {&}, 1 < i < p 

need to be simulated.

Figure 2.10 provides five simulated sample paths for the Ornstein-Uhlenbeck pro

cess with covariance function exp[— \t — s|] using the truncated Karhunen-Loeve ex

pansion at order 50. The eigenvalues and the eigenfunctions follow the analytical 

expression in equation 1.3.31 and equation 1.3.32 respectively. The speed of the 

simulation is pretty fast.

2.4 Summary

This chapter contributes to the numerical solutions of the Fredholm integral equa

tions. It provides a computational foundation for the later chapters, and the methods 

introduced here are applied throughout the thesis. The numerical methods discussed 

in the chapter are the integral methods, including the uniform integral method and
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5 Simultaed Paths, order=50

0.5

-0.5

-1.5
0.2 0.4 0.6 0.8

time

Figure 2.10: The simulation performance of the truncated Karhunen-Loeve expansion 
for the kernel exp(—\t — s|): five simulated paths using the truncated Karhunen-Loeve 
expansion when p = 50.
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the trapezium integral method, and the expansion methods, including the Fourier 

basis method and the Haar wavelet basis method. The integral methods discretise 

the time interval T  and transfer the Fredhom integral equation into a generalised 

eigen-equation problem, while the expansion methods employ certain basis functions 

to expand the eigenfunction. The examples being implemented are the Ornstein- 

Uhlenbeck process, whose analytical solution to the Karhunen-Loeve expansion is 

known, and the process with squared exponential kernel, whose analytical solution is 

not known.

Among all the four methods, the Fourier basis method is the worst performing 

method in terms of its computational speed and computational accuracy. In either of 

the examples, the Fourier method requires the longest computational time, although 

only 11 basis functions are involved, compared to 256 basis functions in the Haar 

wavelet method. This is due to the calculation of the integral involving both the 

kernel function and the basis function. The approximation of the eigenfunctions 

using the Fourier basis method result in non-smooth oscillated function. It might be 

caused by the cyclical variation existing in the trigonometric function. The eigenvalue 

approximation provides reasonable result, although the value is still not as good as 

that provided by other numerical methods.

According to the two examples provided in this chapter, the third best numerical 

method is the uniform integral method. The uniform integral method divides the time 

interval T  into small intervals with equal length and then assigns equal weights to 

each interval. The speed of the integral methods can be controlled by the number of 

intervals involved. Using the uniform integral method, the error of the approximation 

of the eigenvalues is in general smaller than that provided by the Fourier basis method
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and the computational speed is much faster.

The calculation procedure of the trapezium integral method is very similar to that 

of the uniform integral method, except for the weights. The weights assigned to the 

first and the last small intervals are only half of the weights assigned to the rest small 

intervals. Although only the weights are different compared with the uniform integral 

method, the result improves dramatically. In both examples, for the approximation 

of the eigenvalues, the error using the trapezium integral method is all below 1%, 

while the error using the uniform integral method sometimes goes beyond 4%. The 

approximation to the eigenfunction is very close to the analytical solution, in the 

example of the Ornstein-Uhlenbeck process, and very similar to that provided by the 

Haar wavelet method, in the example of the squared exponential kernel.

The Haar wavelet method utilises the easiest basis function in the Daubechies’s 

wavelet family. In order to facilitate the calculation, both the number of the basis 

functions M  and the number of sampled points are often chosen to be the power 

of two. The computational speed using the Haar wavelet method is very fast even 

with M  =  256 in our example. Its approximation to the eigenvalues is the closest 

to the analytical solution, in the example of the Ornstein-Uhlenbeck process, and 

therefore is regarded as a comparison standard in the example of the squared expo

nential kernel. In terms of the approximation to the eigenfunctions, both the Haar 

wavelet method and the trapezium integral method provides similar results, and very 

close to the analytical solution in the example of the Ornstein-Uhlenbeck process. 

However, what is worth mentioning here is that if judging from both lt measure and 

Zf measure, i = 1 and 2 depending on whether the bias or the standard deviation is 

concerned, the trapezium integral method outperforms the Haar wavelet method in
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the approximation of the eigenfunctions and the covariance function reconstruction.

So far, the best two numerical methods are the trapezium integral method and the 

Haar wavelet method. Both of them are computationally accurate and fast. When 

the covariance function is known, the Haar wavelet method is preferred in the later 

chapters. Since it is the expansion methods which indeed regard eigenfunction as a 

function, which is one of the key ideas to some applications, such as the functional 

data analysis. The integral trapezium method can only obtain the value at the time 

points used in the approximation of the integral, although it is more accurate in terms 

of li measure and I? measure, i = 1 and 2.

2.5 Num erical m ethod for the spatial Karhunen- 

Loeve expansion

The spatial Karhunen-Loeve expansion has been discussed separately in section 1.4, 

chapter 1. The derivation of the spatial Karhunen-Loeve expansion follows directly 

from the univariate Karhunen-Loeve expansion, except for the time changing from 

the scalar to the vector.

In terms of the numerical methods, spatial processes with high dimensional time 

cause computational problems in practice. One one hand, the amount of calculation 

involved is huge. In d- dimensional time spatial processes, each time point s G T  

is a d-dimensional column vector, i.e. s =  ^si, S2 , ••• , Sdj ■ If n points are

chosen in the direction of s*, 1 < i < d, the total possible number of the points 

for s is n d. Even if in the two dimensional case, if n is 100, the total possible 

number of the points involving in the calculation is 104, hence the covariance matrix



is with dimension 104 x 104. This is beyond the computing power of some popular 

mathematical package, for example, Matlab 7.0.4, in a normal computer, with CPU 

Pentium 4 3.6GHz. On the other hand, using the expansion method, for example, 

the Haar wavelet method, it requires 2d-dimensional wavelet transform. This causes 

furthers delay and results in even longer time in practice. Therefore, the integral 

method is used as the numerical method here.

The result derived at the univariate case can still be applied. The major difference 

is that the vector time needs to be substituted for the scalar time. The calculation 

procedure for the two dimensional spatial process is discussed in detail in this section. 

It can be easily generalised to the d ,d >  3 dimensional case.

Assume that t  =  ( 1 ) G T , ^ G [0, TJ], z =  1, 2. For each direction of £*, i =  1,2,
W

rii + 2 points are chosen, including the boundary points, i.e. 0 = Uo < tn < t i2 < 

• • • < U{ni+1) — Ti- Hence the total possible number of points for t  is (ni +  2) x (n2 +  2) 

and can be expressed as

, _  ( t lo\  . _  ( t lo \  + _  A lA  f _  A l(n i+ in
I I j I I ) ' ' '  i h  I I ’ ’ (ni+i)(n2+i)—1 I I
\ t 2 0 J \ t 2 1J \ h j )  \h{n2+l)J

(2.5.1)

where 0 < i < n i  +  l , 0 < j  <77,2 +  1 and k = z(n2 +  2) + j .  For simplicity, it is further 

assumed that Ti =  T2, n = n\ = n2, tj — t\j = t2j ) 0 < j  < n  + 1  and t'k+l — t'k =

0 < k < n.

For s , t  G T , the Fredholm integral equation on the zth eigenvalue and the ith 

eigenfunction can be approximated as follows.
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Its corresponding orthogonal condition of the eigenfunction is

(n+2)5

0i(s)0j(s)ds =  6ij &
' T

Wk is the weight and equals to

Wk = w'iw'j 0 < i , j  < n + 1 and k = i(n  +  2) +  j

f  (n+2)2

/ (f)i(s)(f)j (s)ds = 5i:j &  ^ ( sfc)^(sfc)̂ ifc =  Sij (2.5.3)
T k=i

(2.5.4)

where w\ is the weight in the univariate case. For the uniform scheme, w[ =  ^ 2, 0 < 

i < n +  1; while for the trapezium scheme, w\ =  ^ y ,  1 < i < n and w'Q = w'n+1 =

2(n+l) ’

Equation 2.5.2 can also be expressed into the matrix form.

K W h  =  \i<Pi , (2.5.5)

where

K  =

I  K (  t 0, t 0) 

Z f ( ti ,t0)
K (to»ti)
^ ( t i , t i )

W  =

w0 0 

0 w\

\

^ ( t 0, t (n+2)2-i) ^

t ( n+2)2- l )

y ^ (t0, t(n+2)2_!) K( to ,  t(n+2)2_i) ••• 7:C(t(T1+2)2_1, t(n+2)2_!)y

y 0 0 • • • w{n+2)2_iy
(^i(to), 4>i{ tl) , 0i(t(n+2)2- l ) )

Equation 2.5.5 is equivalent to equation 2.1.5 in the univariate case. The remaining 

numerical procedures are exactly the same as that in the univariate setting. See 

section 1 of this chapter for details.
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l s t ( l , l ) 2nd(l, 2) 3rd(2,1) 4 th (3 ,1) 5th(l, 3) 6th(l, 4)
Analytical
Numerical

0.1642557
0.1642817

0.0182506
0.0182651

0.0182506
0.0182651

0.0065702
0.0065837

0.0065702
0.0065837

0.0033522
0.0033654

Error 0.02% 0.08% 0.08% 0.21% 0.21% 0.39%

Table 2.11: Eigenvalue comparison for the Brownian sheet. Numerical method is the 
integral trapezium method when n = 50. (i, j)  in the first row represents the zth value and 
jth. value used in equation 1.4.9.

Example: The Brownian sheet in [0,1] (num erical solution)

This example follows the analytical solution to the Brownian sheet derived in 

chapter 1. The analytical solution will be used to compare with the solution derived 

from the trapezium integral method. Due to the lack of computing power, we use 

n = 50. Table 2.7 compares the first six eigenvalues. Error is computed using equation 

2.3.5.

The difference between the analytical solution and the numerical solution does not 

appear until 10~5, which is relatively small. Although the error calculated in the table 

is bigger than that in the univariate case, the result is still very close considering only 

n = 50 points are used. More n could be considered to improve accuracy. In terms of 

the eigenfunctions, since the eigenfunction is now a function of two dimensional time, 

both the 3D plot and its corresponding contour for the first four eigenfunctions are 

plotted in figure 2.11 and figure 2.12 respectively. The straight line in the contour 

is where the eigenfunctions equal to zero. For example, for the second eigenfunction 

s) =  2sin(|7rt)sin(|7T5), it equals to zero when sin(|7rt) =  0. It is equivalent to 

say that t = | .

In terms of the performance of the numerical method for the eigenfunctions, which
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is shown in figure 2.13 and figure 2.14, the approximation gets worse when the eigen

function’s corresponding eigenvalue becomes smaller. Using the numerical method, 

the first eigenfunction is very like the analytical solution, while some deviation from 

the true value start to appear in the second and the third eigenfunction. For the 

fourth eigenfunction, the approximation is very unsatisfactory. It is quite different 

from the analytical solution. Again, one of the reasons is due to the limited number 

of points used in this example, which is n = 50.

first eigenfunction second eigenfunction

third eigenfunction

1

s 0 0 t 

fourth eigenfunction

Figure 2.11: 3D plot for the first four analytical eigenfunctions of the Brownian 
sheet. 1st: 2sin(|7r£)sin(|7rs); 2nd: 2sin(§7r£)sin(|7rs); 3rd: 2sin(|7r£)sin(§7rs); 4th: 
2sin(|7ri)sin(|7rs).
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first eigenfunction
1

0.8

0.6

0.4

0.2

0
0 0.5 1

t
third eigenfunction

1

0.8

0.6

0.4

0.2

0
0 0.5 1

t

Figure 2.12: Contour for the first four 
sheet. 1st: 2sin(|7r£)sin(|7rs); 2nd: 2sin 
2sin(|7rt)sin(|7rs).

second eigenfunction
1

0.8

0.6

0.4

0.2

0
0 0.5 1

t
fourth eigenfunction

1

0.8

0.6

0.4

0.2

0
0 0.5 1

t

analytical eigenfunctions of the Brownian 
|7ri)sin(|7rs); 3rd: 2sin(|7rt)sin(|7rs); 4th:
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first eigenfunction second eigenfunction

third eigenfunction fourth eigenfunction

Figure 2.13: 3D plot for the first four eigenfunctions of the Brownian sheet using the 
integral trapezium scheme (n =  50).
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first eigenfunction second eigenfunction
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0.4
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t
third eigenfunction

1

0.8

0.6

0.4
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0
0 0.5 1

0.8

0.6
w

0.4
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fourth eigenfunction
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w

0.4
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Figure 2.14: Contour for the first four eigenfunctions of the Brownian sheet using the 
integral trapezium scheme (n =  50).



Chapter 3 

M axim um  Entropy Sam pling for 
Gaussian processes

In this chapter, the Karhunen-Loeve expansion is related to maximum entropy sam

pling in the Gaussian case. Entropy, or the Shannon entropy, is defined as

Ent(r) =  £ r[-log{p(r)}] (3.0.1)

The following formula related to the entropy is used throughout this chapter. See, 

for example, Cover and Thomas (1991).

E n t(r) =  Ent(Ts) +  £ r s{E n t(rsc |r s)} (3.0.2)

In our case, define X s  =  X s =  and X sc =  {Xi}*G5c, where the

index set S  — {1, 2, • • • , N }  represents the whole “population” and s C S', \s\ = n is 

a chosen sample. The the above formula can be rewritten as:

Ent(X 5) =  Ent(Xs) +  EXs{Ent(Xsc\Xs)} (3.0.3)

It means that the entropy for the “population” can be decomposed as the en

tropy for the sample set and the expected posterior entropy of the unsampled set.

82



83

Maximum entropy sampling claims that the expected posterior entropy of the un

sampled population sc should be minimized in terms of the entropy sampling. Since 

the left hand side of equation 3.0.3 does not depend on the experiment, minimizing 

the expected posterior entropy is equivalent to maximising the entropy of the chosen 

sample, which is the first term of the right hand side. The idea of maximum entropy 

sampling was first introduced by Shewry and Wynn (1987). Since then algorithms 

have been developed by Lee (1998) and Hoffman et al. (2004). Later discussions on 

this topic can be found at Sebastiani and Wynn (2000) and Wynn (2004).

In the Gaussian case, the entropy is related to the logorithm of the determinant 

of the covariance matrix. Assume A is a n-dimensional multivariate Gaussian distri

bution with mean (i and variance S, i.e. X  ~  N(fi, E), then

Ent(X) =  ^  4- ^log(27r) +  ^log(|E |) (3.0.4)

Hence for a Gaussian process, given fixed N  and n maximising the entropy is equiva

lent to maximise the determinant of the covariance matrix comprising of the sampling 

points.

3.1 Karhunen-Loeve expansion, m axim um  entropy 

sam pling and D -optim ality when n  = p

In this section, using the truncated Karhunen-Loeve expansion, the true covariance 

matrix of the sample set is approximated by the truncated covariance matrix defined 

in equation 3.1.2. Then applying the General Equivalence Theorem (theorem 3.1.2), 

the maximum entropy sampling is connected with the D-optimal design.
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Assume {K(i)} is a centered Gaussian process, i.e. E[Y(t)] =  0. Using the 

Karhunen-Loeve expansion, it can be expressed as

y ( t )  = Y> (3.1.1)
Z>1

where e* ~  i.i.d. N (  0,1).

In practice, only the finite order of the expansion is used. In this section we further 

assume that the true stochastic model for Y(t)  is under truncation at order p and is 

written as Y(t)  = Y^i=i Then with n design points t i , t 2, • • • , t n, using the

truncated Karhunen-Loeve expansion at order p, we can approximate the covariance 

matrix as K p, which is

K p = 4>t A4> (3.1.2)

where

(u) fa fo )  

02 (U) 02(^2)

01 {tn) \

0 2  (j'n) A =

y 0 p ( U )  0 p ( ^ 2 )  ’ ' ' 0 p ( ^ n ) y

( Ai 0

0 A2

0 0 Ap /

(3.1.3)

According to chapter 1, each element of K v is a truncated version of the true 

covariance function. The accuracy of the approximation can be controlled by choosing 

an adequate order p. Assuming a suitable choice of the order p, the rest of this chapter 

concentrates on maximising the determinant of the truncated covariance matrix Kp, 

rather than that of the true covariance matrix. From now on, the design maximising 

the determinant of K p will be referred to maximum entropy sampling.

In order to set up a duality between maximum entropy sampling and the D- 

optimality, the condition that n > p is required.

In this section we concentrate on n = p.
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P ro p o sitio n  3.1.1. When n = p, K p =  with $  and A defined in equation

3.1.3, then det(Kp) = det(4>4>T)det(A)

Proof.

det (Kp) = det(4>TA4>) =  det(<f><f>TA) — det(<l><E>T)det(A) (3.1.4)

□

According to proposition 3.1.1, when n = p, the determinant of the covariance 

matrix can be expressed as det(4?<J?T)det(A). Hence maximising the entropy is equiva

lent to maximising d e t($ $ T)det(A). Since det(A) is fixed whatever design we choose, 

maximising det(A”p) for the maximum entropy is further equivalent to maximising 

det^cfr7’), in this case.

Remark 3.1.1. When n > p, K p is a singular matrix, i.e. det(Ap) =  0, so that 

no equivalence is obvious. However, under a certain setting, we can still argue the 

equivalence between maximum entropy sampling and maximising det($<l>T), as long 

as p is big enough to capture most of the cumulative expected variance. This will be 

discussed in section 3.2.

We further denote X  = QT to match the standard notation of the D-optimality, so

that
71

(3.1.5)

where
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Now define the information matrix F  needed for the D-optimal design. In general, 

the information matrix F  for the design £ is expressed as

n

f ( t ) f ( t ) Tpc(t)dt = ^r , f{U)f( t i )p(t i)  (3.1.6)
i = 1

where pc(t) is a continuous measure and p(t) is a discrete measure. The first equality 

is for the continuous design while the second equality is for the discrete design. We 

also need to define a sensitive function written as d(x,£) — f ( x ) TF ~ 1(£)f(x).

The following equivalence theorem plays a major role in the optimal design of this 

chapter. It builds a bridge between maximum entropy sampling and the D-optimal 

design. See, for example, Kiefer and Wolfowitz (1960), Kiefer (1974) and Fedorov 

(1972), for details.

T h eo rem  3.1.2. (General Equivalence Theorem, GET) The following assertions are 

equivalent

(i) the design £* maximizes det(F(£))

(ii) the design £* minimizes maxtd(t,£)

(Hi) max td(t,£*) = p ,  where p represents the number of unknown parameters.

A design measure £ maximising det(F(£)) is called a D-optimal design measure. 

The GET provides a way of checking the D-optimality by plotting d(t , £). When 

n = p, maximising K p is equivalent to maximising det(X TX). Under the discrete 

uniform design, the information matrix F  is expressed as F = Hence, given

an adequate order p, maximum entropy sampling aims at maximising det(F). Or 

using the GET, given an adequate order p, a sampling £* is a maximum entropy 

sampling if max td(t,£*) — f ( t )[x ^  — V• For processes satisfying the

Sacks-Ylvisaker conditions (see remark 1.3.3, chapter 1), there is a lot of “energy”

F ( 0  =
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in the tail, i.e. p needs to be very big to make any connection between maximum 

entropy sampling and the D-optimal design. However, for the process with smooth

be discussed in more detail in the examples in the later sections of this chapter.

Now using the GET, we provide a simple example for the Brownian motion under 

a discrete uniform design. For simplicity, we only assume n = p = 2 in this case. 

However, using order 2 is not an accurate way of describing the covariance of a 

member of the Sacks-Ylvisaker family. The optimal points, although D-optimal, do 

not maximise the entropy. However this example goes some way towards explaining 

the connection and is analytically tractable. The optimal points will be used to 

compare with the result from numerical algorithm in section 3.4.

E xam ple: T h e  B row nian  m otion  on [0,1], w hen  n = p = 2

As a prior knowledge, time point 1 is always chosen as one of the D-optimality points 

in the Brownian motion. The choice of 1 will be shown reasonable on the sensitivity 

function in figure 3.1 when n — p = 2. For bigger n and p, refer to theorem 3.3.1 on 

the equivalence of the D-optimality and maximum entropy for the Brownian motion.

In the n  =  p =  2 case, since 1 has been chosen as one of the design points, only 

one more point t (0 < t < 1) needs to be chosen. Under the discrete uniform measure,

covariance kernels, like exp[— (t — s)2], p can be chosen as small as 2 to establish a 

strong connection between these two sampling schemes. Both types of processes will

When p = 2, f ( t )  gives two eigenfunctions

(3.1.7)



Therefore, F  =  JT=1 / f a ) f T f a ) p f a ) , fa  = t , t 2 =  1), i.e.

F = f  sin2( f ) +  1 s in ( f  ) s in (^ )  - l \

\^ s in (y )s in (^ ) -  1 sin2( ^ )  +  1 y

Then, det(F) =  (sin(y) +  s in ( ^ ) ) 2. Since s in (y ) +  sin(y^) >  0 when 0 < t < 1,

maximising det(F) is equivalent to maximising sin (y ) +  sin(y^).

Set Q = s in (y ) +  sin(y^), then

dQ 1 ,Trt. 3
^  = 2cos(Y) + 2cos(ir ) (3-L9)

The optimal point can be found by setting ^  =  0. Hence, t =  2arcc°s( 3 ) ^  q.3918

1.4

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8
t

Figure 3.1: d(t) = f ( t ) TF  1f ( t )  for the Brownian motion, when n = p = 2 and 
0 < t <  1.

Figure 3.1 plots d(t) =  f ( t ) TF  1f( t )  under the optimal design points we just 

found. It shows that maxo>t>i(d(£)) =  2, which is the number of the parameters.
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oor»ppf)C/ n/6 \
It confirms that ------ -— 2— and 1 are the D-optimal design points. However, as we

have mentioned earlier, p = 2 is too small to approximate the covariance matrix for 

the Brownian motion. Although the two points we found are D-optimal, they are not 

the optimal points for the Brownian motion under the maximum entropy criteria.

3.2 Equivalence of D -optim ality and maximum en

tropy sampling when n  >  p

In this section, we cope with the condition n > p. As is mentioned in remark 3.1.1, 

when n > p, the truncated covariance matrix K p is singular if the true stochastic 

model is the truncated version of equation 3.1.1. Hence an alternative stochastic 

model should be considered under the current setting.

We assume that the true stochastic model is a regression model defined as follows.

Vs =  X aV  +  e ,

where \s\ = n < N, V  ~  N ( 0, W)  and error term e ~  Af(0, S). Since the number of 

the sampling points is n and the number of the parameters is p, X s is with dimension 

77, x p, while V  is with dimension p x 1. We assume that V  and e are independent 

and E =  cr2/ ,  so that the model for Ys is a Gaussian model with the independent 

noise. In some literature, the Gaussian model with the independent noise is called the 

Gaussian regression model. See, for example, Rasmussen and Williams (2005) and 

MacKay (2003). A Gaussian regression model is a good stochastic model in dealing 

with the case when the number of the observations is bigger than the number of the 

parameters, i.e. n > p. Application of this model will be used in both chapter 3 and 

chapter 4.
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For this chapter, it is further assumed that W  is diagonal. When n > p, we will 

argue that if the first p parameters can explain almost all the cumulative expected 

variance, maximum entropy sampling for theuprocess Ys is equivalent to the D-optimal 

design.

We start from decomposing the entropy of Ys.

det[Var(ys)] =  det ( X „ W X j  + a2Inxn)

=  det((/ DUt  +  a2UUT)

= det[t/(D  +  a2I)UT]

=  a3^ f [ ( fH(D1) + a3)
i—1

= a2{n- p)de t (W l2 X Z X , W k* + a 2Ipxp) ,

where UDUT is the eigenvalue decomposition for X SW X J \  fjn(Di) is the ith eigen-

value for D\\

( m { D x) 0 0 \

0 /^ ( A )  • • • 0,

^0 (n-p)xp  0 (n—p)x(n—p)

v o 0 ••• M A ) /

If n and p are fixed, cr2 is fixed. Hence maximising the entropy of Ys is equivalent 

to maximising d Q t{ W ^ X jX sW ^  +  cr2/ pxp). In the case tha t cr2 —> 0,

d e t ( W ^ X j X sW ^  +  cr2/)

=  f J ( M  A )  +  O'2)
1 = 1

= n w A M + o M
i= 1

=  d e t l W t X j X ' W ^  + oia'*)
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If we further assume that X s = <&T =  X  and W  = A,

Var(Ys) =  +  a2I  = X A X T +  a21 (3.2.1)

The first term on the right hand side is the same as equation 3.1.2, which is the 

covariance matrix expressed by the truncated Karhunen-Loeve expansion at order p. 

Since the true covariance function can be expressed by the un-truncated Karhunen- 

Loeve expansion, i.e. an infinite sum, the second term on the right hand side a2I  

only captures the tail Y ^ p+i ^$1  (^)>  ̂=  1> 2, • • • , n for the diagonal elements in the 

covariance matrix. When the first p eigenvalues can explain almost all the cumulative
yp

expected variance of the original process, i.e. is close to 1, the majority of the

variance of Ys can be mainly captured by the truncated Karhunen-Loeve expansion 

with the remaining energy in the tail very small, implying very small a2. In the
V"*P ^

extreme case that yW 1 y  —> 1, a2 —> 0. Therefore, maximising det[cov(Ys)l is equiva- 

lent to maximising det[A^X TXhh] = det(A)det(J^TAr). Since A is not related to the 

design, maximising the entropy of the process is the same as maximising det(X TX). 

This is the same result as what is derived in section 3.1.

Remark 3.2.1. In Wynn (2004), the model for Ys is regarded as a Bayesian model, 

where the distribution for the parameter V  needs to be updated. In order to have 

the maximum posterior information on V, we aim to minimize the posterior entropy 

of V, which is Ent(f/|YS). Using Shannon’s theorem, there are two ways to express 

the joint entropy of V  and Ys.

Ent(Ys, V) = Ent(U) +  EyEnt(Ys|U)

Ent(Ys, V) = Ent(Ys) +  EysEnt(V\Ys)
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The first equation shows that Ent(Y^, V) is independent of the design, i.e. indepen

dent of s, since Ent(y^|V) =  Ent(e). Therefore minimizing the posterior entropy of 

the parameter V,  (second term of the second equation) is equivalent to maximising 

Ent(Ts), which provides the same result as maximum entropy sampling.

In short, under the Bayesian setting, we quote the result by Wynn (2004)

Theorem 3.2.1. Under a suitable Bayesian regression model, maximum entropy sam

pling for choice of a subsample s from a population S  is equivalent to

(i) minimisation of expected posterior entropy for the unsampled population units.

(ii) Bayes minimum entropy design for the regression parameters.

Remark 3.2.2. Another reason that eigenvalues will not change our result is as follows: 

For the Gaussian regression model Ys — X SV  +  <r2/ ,  we can also define X s = 

and W  = I. Then using the same arguments as those in the rest of this 

section, maximising the entropy of Ys is the same as maximising det(A”J X s) = 

detE ? = i / ( U ) / T(U)]- where

m  =
x/^2^2 (t)

=  A * / M (3.2.2)

' 1 Y n \ f f (t ) f >(t )T ]Under the uniform design, the information matrix F  is expressed as F = i=1 ,
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then the sensitivity function d  (t ) can be written down as

d'{t) =  / ( t f F ' - y w

=  n f T {t)A2[A-2(XTX ) - 1A~2}A2f(t)

= m  ( * ? ) 1 m  = i T( t ) F - ij ( t )

= d{t)

Now following the GET, minmax d  (t) is the same as minmax d(t), which is equivalent 

to maximising det(X TX). This is not related to the eigenvalues.

3.3 Brownian m otion on [0,1]

In this section, it is proved that, for the Brownian motion, the maximum entropy 

sampling is an approximate D-optimal design when conditions provided by theorem 

3.3.1 are satisfied.

We have shown an example on the Brownian motion in section 3.1 when n = p = 2. 

However as we have mentioned, p = 2 is not big enough to capture the true covariance 

function, since the first two eigenvalues only explain about 90% of the cumulative 

expected variance.

We now show that analytically the optimal design points for maximising the en

tropy of the Brownian motion should be equally spaced. For the Brownian motion, 

the analytical covariance function K(s , t )  = min(f, s). Hence the covariance matrix
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for the discrete time points 0 < t i  < t 2 <••• '< tn < I is

(

K  =

11 £i t\ • • • ti
t\ t2 t2 • • • t2

t\ t2 t3 • • • t3 (3.3.1)

y t\ t2 t3 • tn J

and det(.ftT) =  (ti -  t0)(t2 -  ti)(f3 -  t2) • •• (tn -  tn_ i) =  [ I L i  u*> where u{ =  t{ -  t*_i, 

1 < i < n and to =  0. Notice that Y^=i ui =  tn- Maximum entropy sampling problem 

has now been transformed to finding the points t ,̂ 1 <  i < n, so that

n n

m ax(det(if)) =  max J J u ;  =  max J J ( t j  — tj_i)
i= 1 i= 1

n

subject to = tn and to =  0
i = l

The solution to is U i  = 1 < i <  n .  Therefore, the solution to U is t* =

1 < i <  n .  In our case we always choose tn = 1, so that our sampling scheme is 

an equally spaced sampling on [0,1], with 1 as one of the design points, i.e. U =

1 <  i  <  n .

It is further assumed that the measure here is the uniform discrete measure £*, 

i.e. for n design points on [0,1], p(U) =  In the Brownian motion, the eigenfunction 

can be written as <f>i(t) = \/2sin[(z — |)7rt], i > 1, hence for a, b G N

J2MU)<Pb(ti) =  2 ^ s i n [ ( a -  I)7r^]sin[(6 -
i =  1 i —1

2 n  2 n

=  y^{cos[(a — b)7r—] — cos[(a +  b — l)w—]}
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It can be further calculated that

n a = b n

^  cos[(a—6)7r—] =  < 0 | a - 6 | e v e n  ^ c o s [ ( a + f r - l ) 7 r -

— 1 |a — b\ odd 1-1i = l 0

1 a = b

1 |a — 6| even

|a — b\ odd 
(3.3.2)

Hence

i= 1

n +  1 a — b

1 \a — b\ even (3.3.3)

— 1 |a — b\ odd

Whatever p is even or odd, the calculation procedure for finding the D-optimality 

points is the same. Here, only the result for even p is demonstrated. When p is even

/ ^  _l  1 _ i  i  . . .  i  —i \

• - 1  1
=

7 2 + 1  - 1  1

— 1 7 2 + 1 —1

1 - 1  1

- 1  1 - 1

det(X TJsf) =  72p _ 1 (72 +  p)
V

7 2 + 1  —1

— 1 7 2 + 1

Therefore the inverse of the information matrix F  =  is expressed as

i  on _L   1 1 _1 _1 I \

- 1

F -1 =
72

n(n  +  p)

72 +  p  —  1 1 — i  . . .  — i

1 72 + p  — 1 1  • • •  1

1  — 1 . . .  72 +  p  —  1  1

—i i ••• i 72+_p — iy

(3.3.4)

with f ( t ) T = (\/2sin(|7rt) %/2 s'm(^nt) ••• \/2sin((p — | ) 7r£)^ • The sensitivity
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function under the uniform design £* is

d(t ,C)  =  /(«)r F - 1/( i )  =  2 j ] ^ ± | ^ y h s i n 2[( i - i )7 r t ]

+  2 £ ( - l ) ^ - ^ L ^ sin [(i  -  t)7rt]s in [(j  -  I ) r t ]

Also notice that

• or/- I n i r/«. - \ i sin(7r£)sin(27rfo) . .2 ^  sin [(i -  - ) ttt] =  -  cos[(2i -  ljjrf]} =  p  _  (3.3.5)
i= l  i= l  '  '

Now the equally spaced uniform sampling can be related to the approximate D- 

optimal design for the Brownian motion. The result is summarised in theorem 3.3.1.

T heorem  3.3.1. For the Brownian motion on [0,1], the uniform sampling design £* 

with the sampling points U = ^,  1 < i < n is optimal in the following two senses

(i) It is a maximum entropy sampling.

(ii) It is an approximate D-optimal design in the sense that: for all e > 0 and any

point t £ [e, 1 — e], if  n —> oo and p —> oo in such a way that n > p, limp^oo^ = c,

where c is a constant and c > 1, then

lirrip-too  ̂ ^  ̂ =-- 1 (3.3.6)

Proof. The first part of the theorem on maximum entropy sampling is shown at the

beginning of this section. The equally spaced design on [0,1] maximises the entropy 

of the Brownian motion. We only need to show that the second part of the theorem
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now.

d (* ,r )

=  2 i {n{n l ~ p ) ) s^ [{i -  \ )7rt] + 2 E ( - 1)i+5+1 ( 7 T r i sin[(i -  -  5 M

7 1 + p  — 1

+3
P

2 E ^ K ‘- J h

^ ( - l ) i+:,+1sin[(i -  i)jrt]sin[(j -  \ ) * t ]  ~  X ^(“ l)2i ‘sin^fi -  + t ] }n + p ' L' 2
F  2 = 1  .7 =  1j  =  1 2 =  1

P
2=  2 ^ s i n 2[(i -  i)jrf] -  { ^ ( - l ^ s i n K i -  ^)jrt]}

i = li = l

s in ( 7 r £ ) s m ( 2 7 r tp )  2 ^  . . 1 .  ,n <
P ----------------- 77;— r-----77----- 7^ 1 /  (—1) sin (z  ) M VF 1 - c o s ( 2 trt) (g +  l)p “  2

Then we obtain
p

d & C )  , 1 sin(M)sin(2Mp) 2 E ? = i(~ 1),sin[(i “  § M  12 /0 o
p p  l-co s(2 7 rt) ( ^ T l ) 1 p 1

For interval [e, 1 — e], there always exists Mi > 1_CQs(2'̂ e') > 0 such that

sin(7ri)sin(27rtp) 1
1 — cos(27rt) — 1 — cos(27re) — 1

Hence
1 sin(7r£)sin(27r£p) 

5p 1 — cos(27rt)U ° w -  =  0 (3-3.9)
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Also, for interval [e, 1 — e], there always exists M 2 > 2(i-cos(7re)) > suc^ ^ a t

p  ̂  ̂  ̂ y

I X J (_ 1 )'sin[(i ~  2 ^ ^  =  12 [cos(7Tt) +  1j { ( ~ 1)Pcos( 2 7r̂ sin[7r̂ ^ +  1)}cos(7rt)

+  (—l ) psin[7rt(p +  l)]cos(-7rt) — ( - l ) pcos(-7r£)cos[7r£(p +  l)]sin(7rt)
z z

— (—l ) psin(-7r£)sin[7r£(p +  l)]sin(7rt) — (—l ) psin(^7r£)cos[7r£(p +  l)]cos(7rt)

1 1  1 1
— (—l ) pcos[7r£(p +  l)]sin(-7rf) — cos(-7ri)sin(7rt) +  sin(-7rfc) -f cos(7r£)sin(-7r£)}|

z z z z
9

<  —-----------——  <  m 2
2(1 — cos(7re))

Therefore

lim • ^2=11— I-----"-----  — =  0 3.3.10
P

Since lim ^oo- =  c, where c > 1,

P_+0° ( f +  1) I
hnip^oo———r- <---------— -----^ =  0 (3.3.11)

P

Then we can conclude that for all e > 0 and any point t E [e, 1 — e], if n —> oo and 

p —» oo in such a way that n > p, lim ^oo^ =  c, where c is a constant and c > 1, 

then, (3.3.9) and (3.3.11) hold. Following equation (3.3.7), we obtain,

=  1 (3.3.12)
P

□

Theorem 3.3.1 shows that when both n and p are quite big in a certain relationship 

such that linip^oo^ =  c, where c > 1, then we can almost get a straight line p for 

the sensitivity function across the interval except for the bounds. Figure 3.2 and 

figure 3.3 further confirm the result. In figure 3.2, l im p ^ ^  =  1, while in figure 3.3, 

limp^oo^ =  5. When n and p becomes bigger, the variation at the bounds becomes 

smaller. The value of d(t,£*) across the interval is almost p, when p goes to 1000.
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Figure 3.2: The sensitivity function d(t) of the equally spaced uniform design for the 
Brownian motion, when choosing n = p  =  50,100,500 and 1000 using the truncated 
Karhunen-Loeve expansion.

Remark 3.3.1. When n —* oo, the discrete uniform design becomes a continuous 

uniform design. We denote the continuous uniform design as £**

In the continuous uniform case, measure p(t) = 1,0 <  t <  1, hence the information 

matrix can be calculated as follows
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Figure 3.3: The sensitivity function d(t) of the equally spaced uniform design for 
the Brownian motion, when choosing p = 50,100,500 and 1000 using the truncated 
Karhunen-Loeve expansion and n = 5p.

F  =
Jo

fJo
M t )

M t )  M t )  ••• M t ) ^ j dt

\(/>p(t) J

(  /o <t)\{t)dt f*  01 ( t )M t)d t  

f o M t ) M t ) d t  f o M t ) d t

• f o M t ) M t ) d t

• J o M t ) M t ) dt

{So M t ) M t ) d t  So M t ) M t ) d t  • • • Jo </>p(t)dt J



101

Since the eigenfunctions are orthogonal, i.e. 4>i(t)(f)j(t)dt = 5ij, F = Ipxp. Then

d ( t , n  = f ( t ) TF - ' m  = j ^ m  =  y > m  2[o -  1 h  = p -
i=l i— 1 ' '

Following the same calculation procedure as that for the proof of theorem 3.3.1, 

we can show that for all e > 0, there exists an interval [e, 1 — e], such that

limp-oc^ ’^  ̂ =  1 (3.3.13)
P

It means tha t the continuous uniform design is also an approximate D-optimal design 

in the Brownian motion case on the interval [e, 1 — e].

Remark 3.3.2. The second type integrated Brownian motion is defined, in chapter 1, 

as

v2 I /o’" /(1_1 ■ • • /o‘‘ W1 (to)dto ■ ■ ■ dtm- 1 0 < « < A  if m  is odd
m \ P )  —  \

[ Jo™ /tl_! "  ' ft] W0(t0)dt0 ■ • ■ dtm- i  0 < t < ±  if m is  even
(3.3.14)

with covariance function

K ^(s , t )  = / ••• / (min(s,s1))(min(s1, s 2)) ■ ■ ■ (min(sm,t))ds1ds2 ■ ■-dsm (3.3.15) 
Jo Jo

The eigenvalue and eigenfunction for X ^  are

{  4 \ rn̂  1
Ai =  ( (2t — 1)27T2/  ’ ^  = "  2 ^  i ~  1 (3-3.16)

Its eigenfunction is the same as that of the Brownian motion. For the D-optimality, 

since it is the eigenfunction, not the eigenvalue, which relates to maximum entropy 

sampling. Hence the optimal sampling for the second type integrated Brownian mo

tion is the same as that for the Brownian motion.
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3.4 Num erical m ethods

In practice, the analytical solutions to the Karhunen-Loeve expansion are quite re

stricted to certain processes. The numerical methods have to be implemented instead 

to derive the Karhunen-Loeve expansion for many processes. In this section, in order 

to relate maximum entropy sampling to the D-optimality in the numerical setting, 

the expansion method is mainly considered. Since it is the expansion method which 

treats the eigenfunction as a function, so that the sensitivity function d{x) can be 

calculated under the optimal design in the continuous interval. For the integration 

method, very fine intervals are required for d(x). It involves loads of data, which 

might not be computationally efficient. For the sake of accuracy, we discuss the 

expansion method using the Haar wavelet here.

Although the uniform equally spaced design is one of the easiest designs to handle, 

it is not always D-optimal. We choose n equally spaced design points U =

1 < i < n to show this result. The condition required for these design points to be 

D-optimal is that the number of the eigenvalues used in the truncated Karhunen- 

Loeve expansion should be equal to the number of the basis functions, i.e. M  = p. 

However, the condition M  = p does not allow p and M  to go to infinity at different 

rates, which does not reflect the reality.

We assume that both M  and n are specifically chosen, so that n > M  and both 

of them are the power of 2, i.e. M  =  2X, n =  2y, y > x, x, y G N.  Using the same 

notation as that in chapter 2, matrix <F for the eigenfunctions containing all the n 

design points of order p can be expressed as =  tyTD T, where is a matrix involving
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the Haar basis functions of order M,  i.e.

=  (Vh ,  0 2 ,  • • • ,  0 m )

V  =  ( j P i ( t  l ) ,  0 i ( i 2), 0 i(* n ) )

0»(f) = ipj,k(t) = 'ip(2H — k), i  = 2̂  + k + l,Q < j  < x — 1,0 < /c < 2J — 1

The equally spaced design points under consideration are t{ =  ^=1, 1 < z <  n,

where z =  2J +  & +  1, 0 < j  < x — 1, 0 < k < 2J — 1. In each 0* (i > 2), from

the 7g k  +  1th element to the ^jk 4- ^ x t h  element, the element value is 1. From the

Ifjk +  +  1th element to the ^j(k +  l)th  element, the element value is —1. The

values for the rest elements are 0. It means that, when i > 2

_  0, 0 , . . .  , 0 , 1, 1, • • •  , 1, -1 , -1 ,  • • •  , -1 ,  0 , 0, • • •  , 0
Vi — "------ ----------------- ' "-------------..------------- ' ^

55TT 5m  »-£(*+!)
(3.4.1)

To make this more clear,

i. i. ••• • i

02 =

03 =

04 =

0M

1. 1, ••• , 1, -1 , -1 ,  ••• , - 1
n n
2 2

1, 1, ••• . 1, - 1 ,  -1 ,  , - 1 ,  0, 0, , 0
n n
4 4

0, 0. • • • , 0, 1, 1, • • • , 1, - 1 .  - 1 ,  - 1
n
4

0, 0. ••• , 0, 1, 1, ••• , 1, - 1 ,  - 1 ,  ••• , - 1

 2 nM
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Therefore,

=

0

h (3.4.2)

\  0 0 • • • Im j

where h = 1 and h = It means that =  nH.

In order to derive the coefficient matrix D, the eigenvalue problem A(DH^)  —- 

(DH^){H*AH^)  needs to be solved. After solving for D y the matrix X  in the D- 

optimality can be expressed as X  = 4>T =  D^Mxn-  Then the information matrix F  

is simply an identity matrix, since,

F  =  - X TX  = - D ^ t Dt  = 1 D n H D T = I (3.4.3)
n n n

The last equality comes from the fact that in the eigen-equation A(DH^)  =  (D H ^ ) (H 2 A H * )} 

the eigenvectors D H 5 are orthogonal. Under the equally spaced uniform design f , if 

f ( t )  = D^(t) ,  the sensitivity function d(t ,£) is

=  m TF - im

=  Tj)(t)TD TF ~ 1Dil)(t)

=  4>{t)r  D T D4>{t)

Up till now, the order p for the truncated Karhunen-Loeve expansion can be 

chosen freely, as long as n > p for the consideration of the inverse calculation of F.

If the uniform equally spaced design is D-optimal, d(t ,£) =  p. However, d(t,£) = p 

does not necessarily hold unless further assumptions on D TD  are made. One of the 

possibilities to support d(t,£) =  p is to assume DTD = H ~ l . This equality holds
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when M  = p. Hence under M  = 2X = p,

d{t, 0  =  H ^ip i t )  =  1 +  ^ ) M
i=2

x—1 2J—1 x —1

=  1 +  £  £  2 > 22J+fc+1 (t) =  1 +  £  2-*
j=0 fc=0 j=0

=  2 x = M = p

Since for 0 < t < 1, and for each level j ,  there exists one and only one &, such that

tPh+k+itt) = ^  while the rest ^2»+ifc+iW =  °-

However, as we have mentioned at the beginning of this section that M  = p is not 

a realistic assumption in practice. M  and p should be able to be raised at different 

rates to serve different approximation purposes. M  should be able to increase for 

the accuracy of the eigenfunction, while p should be able to increase for the better 

approximation of the original process. Hence M  = p lacks of flexibility in reality and 

therefore we cast doubt on treating the uniform equally spaced design as D optimal.

In practice, finding the D-optimality points depends on the eigenfunctions of the 

process, which is not always analytically tractable, hence we can not always derive 

the analytical solution to the optimal points. The rest of the chapter contributes 

to an algorithm looking for n design points to maximise the information matrix, i.e. 

maximise n F  =  det(X TX), where X  = D 'I' using the Haar wavelet method. The 

algorithm we are using is called the “DETMAX” . DETMAX was first introduced 

by Mitchell (1974) and then improved by Galil and Kiefer (1980). The DETMAX 

algorithm is an exchange algorithm. Each time it adds a point out of all the N  

candidate points or subtracts a point out of all the current chosen design points that 

can maximise det(X TX). It also defines a failure set $  comprising of designs that does 

not improve determinant after each excursion. At the beginning of the algorithm, ^  is
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set to be an empty set and a random initial design with size n out of the N  candidate 

points will be chosen. Each excursion starts from a set of design points with size n 

and then randomly decides whether to add or subtract a point first. With the size 

of the current design D denoted by n', we continue an excursion following the rule 

suggested by Mitchell (1974)

• If n' > n, we subtract a candidate point if D is not in Otherwise we add a 

candidate point.

• If n' < n, we add a candidate point if D is not in Otherwise we subtract a 

candidate point.

Here, “add” a point means that with the current detfX^X^), we choose a point t 

out of N  candidate points to add to our design, so that we can maximise

Each excursion stops when n' =  n. If there is an improvement in the information 

matrix, £  is emptied. Otherwise, all the designs during the excursion will be added 

to £.

The algorithm stops when \n' — n\ < 6 to avoid the problem of longer algorithm 

and longer time. As is mentioned by Mitchell (1974), a longer algorithm does not seem 

to provide a better result. The other problem of the DETMAX algorithm is that it is

while “subtract” a point means that with the current det(A^X^), we choose a point 

t to remove out of the current design so that we can maximise

d e t(X p r {)[l - (3.4.5)



very easy to get stuck in a local maximum and does not guarantee a global optimum. 

In our case, the local maximum happens quite often and the algorithm continues with 

adding one point and then subtracting the same point. Once the excursion has run for 

more than a certain number of steps, say 200 in our case, and the algorithm still gets 

stuck in the local maximum and does not able to get out, we also stop the algorithm 

for the sake of computational efficiency. One way of improving the performance of 

the DETMAX algorithm is to run the algorithm several times with different starting 

points. We follow the method suggested by Galil and Kiefer (1980) to choose the 

initial design. It is found to be computationally faster than a completely random 

start.

Another drawback of the DETMAX algorithm is that it can not handle very big p 

due to the current computer power, although DETMAX is generally regarded as one of 

the fastest algorithms to maximise det(X TX). For the process in the Sacks-Ylvisaker 

family, p is usually chosen to be big, say 1000, so that its first p eigenvalues can explain
yp \

almost all the cumulative expected variance, i.e. * is almost 1. Since n > p is

required for the singularity of the information matrix, big p implies bigger n and even 

bigger N.  In this situation, an extremely long computational time is usually expected 

and the algorithm is very likely to get stuck in a local maximum. Hence the most 

suitable process to implement the DETMAX algorithm is the smooth process whose 

cumulative expected variance can be almost captured by the first few eigenvalues, for 

example, the Gaussian process with the squared exponential kernel exp[(—(s — t)2]. 

Its first two eigenvalues already explain more than 99% of the cumulative expected 

variance. Therefore they allow big choice of n  under small p, and the current computer 

power can handle the calculation.
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For accuracy, when using the DETMAX algorithm, we always assume that the 

candidate points are U = 1 < i < N,  N  = 5000, and the order for approxi

mating the eigenfunction using the Haar wavelet is M  = 256. The following figures 

on log[det(ATr X)] and max[d(a;)] at each iteration only show the results when each 

excursion finishes and succeeds, i.e. n' = n. When n = p, the algorithm stops at the 

last excursion that results in n' =  n, while when n > p, the algorithm stops at the 

optimal design with size n' rather than n with 0 < \n' — n\ < 6.

We first consider the case when n = p. In order to show that the DETMAX 

algorithm can actually provide the optimal points in terms of D-optimality, we start 

from the example of the Brownian motion when n = p = 2. Although in this case, 

the optimal points we find is not optimal in terms of the maximum entropy criteria 

due to small p, the solution could be used to compare with the analytical solution we 

derived in section 3.1.

Figure 3.4 shows the result for n = p = 2 using the DETMAX. The result for the 

determinant converges in the first few iterations. The optimal points are 0.3907 and

0.9961, who are the 1954th and the 4981th point out of our 5000 candidate points
28XCCOSrespectively. They are very close to our analytical solution ----- -— a- pe 0.3918 and

1. Both of them are equally chosen with probability

As we have mentioned, due to the limitation of the computational power, the 

Brownian motion is not a very good example to show the power of the DETMAX 

algorithm, since it has too much energy in the tail. The DETMAX algorithm is 

more useful in the process, whose cumulative expected variance can be explained by 

the first few eigenvalues. In order to show that the optimal points we find through 

the DETMAX algorithm under the D-optimality criteria is also the optimal points
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Figure 3.4: The Brownian motion when n = p = 2. (Top left) log[det(XTX)] vs 
iteration; (Top right) max(d(x)) vs iteration; (Bottom left) Histogram for the optimal 
points; (Bottom right) Sensitivity function d(x,£*) under the optimal design.

under the maximum entropy criteria, we need to use another algorithm on finding the 

optimal points that maximise the entropy. The most common algorithms to maximise 

the entropy are the greedy exchange algorithm and the branch and bound algorithm. 

See, for example, Ko et al. (1995), for detail. The greedy exchange algorithm is fast in 

practice. The idea behind it is essentially the same as that behind the DETMAX. The 

algorithm starts from a random set with size s < n. Then at each step it increases 

the size of the design space by one so that the current design has the maximum
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entropy. The greedy exchange algorithm also has the same drawback as that of the 

DETMAX, which is that the algorithm sometimes gets stuck in the local maximum. 

The branch and bound algorithm improves the greedy exchange algorithm, however, 

it takes extremely long time for the computation. We tried to choose 30 points out of 

60 points using Matlab 7.0.4. It took the computer for more than 2 days’ work, and 

it still did not return a result. Therefore, we only use the greedy exchange algorithm 

as a method for finding the optimal points under the maximum entropy. Due to the 

computing power, the size of the candidate points are set to be Ng = 1024 with each 

point t{ =  1 < i < Ng. We try to avoid the local maximum by running the

algorithm several times.

We now focus on the Gaussian kernel with the covariance function exp[— (£ — s)2] 

when n = p, since its first two eigenvalues explain more than 99% of the cumulative 

expected variance. We expect that sampling using either the maximum entropy 

criteria or the D-optimality should result in more or less the same solution. We 

start again from the easiest case when n = p =  2. In fact, for n = 2, the analytical 

solution is still tractable. Assume we want to choose points t\ and £2 ( î < h)  on 

[0,1], so that we can maximise the following

1 — {exp[— (£2 — ^i)2]}2 can be maximized, if \t2 — £i| can be maximized. In our case, 

the optimal points should be the bounds of the interval, i.e. t\ = 0 and t2 = 1. The 

result provided by the greedy exchange algorithm matches this. For n = 2, it ends 

up choosing 0.000488 and 0.99951, which are the first and the last points respectively 

in its candidate points set.

Figure 3.5 uses the DETMAX algorithm for the D-optimality points when n =

exp[-(*2 -  £i)2] 

exp[—(£2 -  £2)2]
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p =  2. The solution it provides is t\ = 0.0001 and 12 =  0.9961. They are the 1st and 

the 4981th point of its 5000 candidate points in on [0,1] respectively. They are also 

very close to our analytical solution.
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Figure 3.5: Kernel exp[—(t — s)2] when p = 2. (Top left) log[det(XTX)] vs iteration; 
(Top right) max(d(x)) vs iteration; (Bottom left) Histogram for the optimal points; 
(Bottom right) Sensitivity function d(x,£*) under the optimal design.

Figure 3.7 further investigates DETMAX algorithm on kernel exp[— (t — s)2] from 

n = p =  2 t o n = p = l l .  It plots the sensitivity function d(t,£*) under the optimal 

design. For small n, the optimal points the DETMAX chooses satisfy D-optimality, 

since maxd(£,£*) =  p. When n > 6, there appears some strange behavior in the



112

sensitivity function, whose peak is bigger than p. If we run the algorithm for several 

times, the peak might move up and down due to the different choice of the optimal 

points. The peak bigger than p could be caused by three possible reasons. Firstly, 

as we have mentioned, the DETMAX algorithm is very likely to get stuck in a local 

maximum rather than a global maximum. Secondly, the rounding error is very easy 

to accumulate in the algorithm with big number of points and iterations. Last but 

not least, although our size of the candidate points is as big as N  = 5000, it is still an 

approximation to the continuous interval. The exact location of the optimal points 

might not be included in the candidate points set. Hence strange behavior of the 

sensitivity function can be regarded as acceptable and is due to the numerical error.

The reasons mentioned above also implies that the sensitivity function itself is 

very sensitive to the choice of the optimal points. Even a small difference in the 

points could result in a big difference in the sensitivity function. Figure 3.6 and table 

3.1 show four different tries of DETMAX when n = p = 6. The first try is the best, 

maxd(£,£*) is very close to 6, hence its det(XTX )  is also the highest among the four. 

The second try and the third try have one peak above 6, but the location of the peak 

is different. det(X TX) of the second try is bigger than tha t of the third try. It is not 

only due to its optimal points much closer to the real solution, but also its sensitivity 

function more symmetric and more regular. The last try  involves 2 irregular peaks 

above 6, which result in the worst det(X TX) among all. Therefore, one way of getting 

out of local maximum using the DETMAX is to try the algorithm several times.

The DETMAX algorithm does provide reasonable optimal points after choosing 

the best results among all the tries. Figure 3.8 explains this by comparing the cumu

lative distribution function of the optimal points provided by the DETMAX with that
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Figure 3.6: The sensitivity function d(t, £*) for four different tries using the DETMAX 
algorithm on the kernel exp[—{t — s)2] when n = p = 6. (see, also, table 3.1)

provided by the greedy algorithm. Each jump in the y axis (cumulative distribution 

function F(t)) represents an optimal point in the x  axis (time t ) on [0,1]. Since our 

optimal measure is uniform, the magnitudes of the jump are the same within each 

plot, which is W ith low n  and _p, the optimal points for both algorithms are almost 

the same. When n and p are increased, the difference of the optimal points between 

both algorithms is still relatively small. In fact, the closer the optimal points are to 

the bounds, which is 0 and 1 in our case, the smaller the difference is between both
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1st point 2nd point 3rd point 4th point 5th point 6th point log[det(X7'X)]
Try 1 0.0001 0.1291 0.3663 0.6525 0.8791 0.9961 13.1954
Try 2 0.0001 0.1211 0.3351 0.6681 0.8791 0.9961 13.0932
Try 3 0.0001 0.0899 0.3947 0.6405 0.8791 0.9961 12.9989
Try 4 0.0001 0.1055 0.3791 0.5939 0.8947 0.9961 12.9795

Table 3.1: The optimal points of four different tries using the DETMAX algorithm 
on the kernel exp[— (t — s)2] when n = p = 6. (see, also, figure 3.6)

algorithms. Also there are more optimal points that are closer to the bounds than 

the optimal points in the middle.

We now turn to the other situation when n > p. Using the DETMAX algorithm, 

we find out that out of the n design points found by the algorithm, quite a few points 

overlap. The number of the different optimal points is no, where n > nq. Therefore, 

the frequency for each n0 optimal point might be different depending on the number 

of points collapsing on it. The frequency for the optimal points can be treated as the 

design measure.

Theoretically, when measure is not uniform, and n > p, our argument for the 

equivalence of maximum entropy sampling and the D-optimality still holds after ad

justment. The model we use is still the truncated Karhunen-Loeve expansion, plus 

the independent noise. However the variance of the noise should be defined as a 2W ~ l 

instead of a2I , where W  is a positive diagonal matrix not depending on the design 

points. Hence we need to maximise the entropy of the process

det(<hTA<f> +  cr2VU-1) (3.4.7)

We can multiply the determinant of W  to the above formula. Since W  has no rela

tionship with the design points, maximising the entropy of the process is equivalent
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to maximising the following

det(W')det('f>TA<I> +  o-2VK_1)

=  det(W ^$r A3>W^ +  ff2/„x„)

=  o-2("-’,)det(A2$W $TA2 + a 2Ipxp)

=  cr2(n_J>'[det(A)det(XTiyA')] +  o(a2)\ if a2 -> 0

When the order p for the truncated Karhunen-Loeve expansion can explain almost 

all the cumulative expected variance, a2 —* 0. Hence maximising the entropy is 

equivalent to maximising det( X TW X ) ,  where X  = $ T and W  can now be re

garded as the weighting matrix comprising of the design measure. Notice that when 

n  =  p, the optimal measure for the D-optimal design is simply uniform. Since 

det( X TW X )  =  det(X TX)det(W ), when n = p. W  can then be maximized if all 

its diagonal elements are equal, which implies a uniform measure. Hence maximising 

the entropy is equivalent to maximising det(X TX), which is the old problem we meet 

in section 3.1.

However, in practice, using the DETMAX algorithm, not only n  points collapse 

to no points, but also n0 points have tendency to collapse to p points. Since there 

are a couple of points out of the n 0 points, that are very close to each other. They 

could be considered to be combined into one optimal point. If further comparing no 

optimal points provided by the DETMAX and p optimal points provided by the greedy 

algorithm, they are quite close to each other, except for the measure. This will be 

gone through in detail in the following example on the Gaussian kernel exp[—(t — s)2] 

still, but with n =  500 and p =  11. The reason we use such big n is that we hope to 

capture the right measure for each optimal point the DETMAX chooses.
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Point
Measure

0.0001
0.0918

0.0353
0.1796

0.1173
0.0060

0.2111
0.0040

0.2267
0.0878

0.3555
0.0758

0.3673
0.0160

Point
Measure

0.4923
0.0200

0.5001
0.0040

0.5041
0.0619

0.6291
0.0020

0.6329
0.0020

0.6407
0.0838

0.6603
0.0020

Point
Measure

0.7697
0.0778

0.7853
0.0140

0.8829
0.0858

0.8947
0.0040

0.9611
0.0878

0.9649
0.0020

0.9961
0.0918

Table 3.2: The optimal points and their corresponding measure using the DETMAX 
for the kernel exp[—(t — s)2], when n = 500 and p = 11.

Figure 3.9 shows the best result (in terms of maximising det(X TX)) after sev

eral tries, n — 500 initial points collapse to no =  21 points (see table 3.2). Since 

max[d(t, £*)] is very close to 11, where £* is the optimal design, the algorithm provides 

reasonable optimal points meeting the D-optimality criteria. Within several tries of 

the algorithm, most of the points remain the same, while several points still change. 

It might be these minority points caused by the local maximum of the DETMAX, 

that will affect our further analysis when we compare the points with that provided 

by the greedy exchange algorithm. Nevertheless, most tries result in the points that 

make the sensitivity function close to p.

Another phenomenon worth mentioning here is that, although 500 points already 

collapse to 21 points, some points among 21 points are very close to each other, for 

example the 4th and the 5th point (0.2111 and 0.2267 respectively), or the 19th and 

the 20th point (0.9611 and 0.9649 respectively). If we combine these close points, 

the total number of optimal points could be further reduced to 11, which is the 

number of the parameters p = 11. Hence the number of the optimal points found 

by the DETMAX could be believed to be p, even when n > p. This can be further 

confirmed by comparing the results from the DETMAX and that from the greedy 

exchange, which is shown in figure 3.10.



117

In figure 3.10, although the optimal points from the DETMAX collapse to 21 

and are D-optimal, these 21 points are quite different from the 21 points chosen by 

the greedy algorithm. In fact, after combining the close optimal points from the 

DETMAX and their corresponding measure, the new points almost match the 11 

points chosen by the greedy algorithm to maximise the entropy. The only difference 

is on the measure. While after combination, most new points have the measure very 

close to jh «  0.0909, there are 2 exceptions: the 2nd point 0.0353 with the measure 

as big as 0.1796 and the 3rd point 0.1173 with the measure as little as 0.006. This 

might be caused by DETMAX stuck in the local maximum. Although several other 

tries show that we can assign the right measure to these two points, there are other 

points whose measure might be affected.

In short, when n > p, the support of the optimal points found by the DETMAX 

are almost p. Except for the measure, which might be caused by the local maximum 

of DETMAX, the points (after combination) are also very close to the p optimal 

points found by the greedy algorithm. Hence the D-optimality and the maximum 

entropy criteria are almost equivalent even when n > p. Further research could be 

focused on the improvement of the DETMAX so that global optimal points could be 

found to maximise de t (XTX).
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Figure 3.7: The sensitivity function d(t,£*) for the kernel exp[—(t — s)2] under the 
optimal design, n = p ranging from 2 to 11.
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Figure 3.8: The cumulative distribution function for the optimal design points of the 
kernel exp[— (t — s)2] using the DETMAX algorithm(blue solid line) and the greedy 
exchange algorithm(red dash line), n = p ranging from 2 to 11.
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Figure 3.10: Cumulative distribution function for optimal design points of the kernel 
exp[— (t — s)2] using the DETMAX algorithm when n = 500 and p = 11 (blue solid 
line), the greedy exchange algorithm when n = 21 (green solid line), and the greedy 
exchange algorithm when n = 11 (red dash line).



Chapter 4 

Prediction and M ean Squared 
Error

Assume that there is a set of the sampling points (design) for the centered Gaussian 

process D = {t*, ?/(£*), £* E T , 1 < i < n}, where y(U) are assumed to be sam

pled from a “true” stochastic process, i.e. a process with an infinite order of the 

Karhunen-Loeve expansion. Then based on the sampling points, the value of y at 

{t\t E T ,f  ^  f j , l  < i < n} can be predicted at any other point in the interval T. 

In this chapter, the prediction for y(t) is calculated from the conditional expectation 

based on the sampling points. This can be interpreted as the Bayes estimator un

der quadratic loss. Then the truncated Karhunen-Loeve expansion is used for the 

approximation of the covariance function. Section 1 provides a brief introduction to 

the calculation of the conditional expectation from the perspective of the Bayesian 

analysis and the perspective of the functional analysis. Section 2 calculates the mean 

squared error (MSE) for the prediction derived from the truncated Karhunen-Loeve 

expansion and the generalised MSE. Section 3 concentrates on solving the inverse 

problem for the truncation version of the covariance matrix and puts forward two 

possible solutions. Section 4 calculates the generalised MSE numerically using the

122
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Haar wavelet method, described in chapter 2. Section 5 provides an alternative way 

of modelling the conditional data using the conditional Karhunen-Loeve expansion.

4.1 Prediction

Given the sampling points ys =  {y(£»),£* € T, 1 < i <  n}, we try to predict y(t) at 

any other point t ^  t*. One way of computing this is through the Bayesian analysis. 

The distribution for ys, before sampling, can be regarded as a prior distribution. 

After being given a new time point f, we can update the distribution for y(t) and 

obtain its posterior distribution. The other way of predicting y(t) is to derive a 

minimum norm interpolant through simple kriging. Refer to remark 4.1.2 for a brief 

on kriging. We assume throughout that all the covariances are known, and where 

necessary, distributions are the univariate or multivariate normal.

Assume that K n is the covariance matrix for n sampling points, i.e. (Kn)ij = 

cov(y(U),y(tj)).  W ith a new time point t, a new covariance matrix K n+1 can be 

written as

where (kT) = (cov(y(t), y fa ))  • • • cov(2/(*),l/(*n))) and k = cov(y{t),y(t)).

Using the partitioned inverse equation (see, for example, Press et al. (1992)), 

can be expressed in terms of K n.

(4.1.2)
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where

u = (k — kT K ~ lk)~l 

m  = —uK ~ l k

M  = K ~ l +  —m m T
n u

Then since y(t ) and ys follow the normal distribution, the posterior distribution 

for y(t) given the sampling points ys can be calculated as

P{y(t)\ys) oc e x p [ - i  (y j ,  y { t ] ) K ~ l i

rc exP [ +  2yJm y(t) +  y j M y s)\ 

«  exP [ - |( y W 2 +  ^yjmyi t ) )}

Hence the posterior mean and the posterior variance are as follows

E{y(t)\ya) = - ~ y Ts m  = {yTs u K ~ lk ) - =  kTK ~ lys (4.1.3)
u u

V&r(y(t)\ys) = -  = k -  kTK ~ l k (4-1.4)
u

Denote y(t) = E(y(t)\ys), i.e. y(t) is the posterior mean, since the posterior mean 

minimises the posterior mean squared error.

In fact, from the perspective of simple kriging, together with the functional anal

ysis, y(t) can also be regarded as the minimum norm interpolant of y(t) in Hy  onto

span(ys). Under this setting, a set of coefficients {a*} needs to be found, so that the

following can be minimised

||y ( t ) (4 .1.5)
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Since the norm in Hy  and RKHS are isometrically isomorphic, it is equivalent to 

minimise | |K ( t , .) — J T  a{K(ti, .) ||2r k h s - Using the properties of RKHS (see, section 

1.1, chapter 1, for detail) and using the notation aT = ^<n, a2, • • • , an^, equation 

4.1.5 can be further simplified as

< K ( t , .), K ( t , .) > - 2  < aiK ( U , .), K ( t ,  . ) >  + < f. •) >
i i

= K (t , t )  -  2 'ŝ a iK ( t i,t) +  djajK^j,  tj)
i

- k  —  2 aTk + aTK na
i 3

The last equation can be minimised through the differentiation with respect to 

the vector a. It results in a = K ~ lk. Hence y(t) =  kTK ~ lys as in equation 4.1.3, 

which is an orthogonal projection.

Using a truncated Karhunen-Loeve expansion of order p, and with notation

=  (01 M, 02 W, ••• ,  0;

$  =  ($(*0 , $ ( t2), • • • ,$ (* „ ))

/ a, 0 ■ • • o ')

0 A2 0
A =

 ̂ 0 0 • •• Xpj

The prediction y(t) defined as the conditional expectation E(y(t)\ys) can be ex

pressed as

y{t) =  $ (()t A $($ t A $ )-1!/3 (4.1.6)

Remark 4.1.1. we shall use the term “prediction” , although when the time point is 

in the region of interest, it can be considered as interpolation or smoothing.
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Remark 4.1.2. In general, the statistical technique on interpolating the value y(t), 

using the minimum norm interpolant, from the prior observations ys = {y(U),ti E 

'7', 1 < z where U ^  t , is often called kriging. The kriging model for y(U) is

usually expressed as

y{U) =  n(ti) + £(ti) (4.1.7)

so that E(y(ti)) =  fi(U) and cov[y(ti),y(tj)\ =  cov[f(ti),£(!/)]■ this chapter, 

^(ti) — 0. This is called a simple kriging. Under simple kriging, the minimum 

norm interpolant is expressed in equation 4.1.3. In practice, there are more com

plicated kriging models, such as “ordinary” kriging, which assumes y(U) to be a 

constant, or “universal” kriging, which assumes a general linear trend model on //(£»),

i.e. =  X jU i (3kfk(U)i where f k(t) can be treated as a basis function. For details 

on kriging, see, for example, Sacks et al. (1989), Cressie (1993) and Wahba (1990). 

One can apply the current methods by making the (3k random and incorporating these 

random effect into the covariance but we omit these calculations.

4.2 M ean squared error (MSE)

In this section, the sampling points are assumed to be from what is called the “full” 

model, which is a true model of the process expressed by the infinite sum of the 

Karhunen-Loeve expansion. At the same time, the model for the prediction of y(t) 

is assumed to be from what is called the “reduced” model, where only p terms are 

used for the approximation of the covariance function. The reduced model is also 

called the truncated model in the previous analysis. The main task of this section is 

to calculate the mean squared error and the generalised mean squared error for the
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prediction under the reduced model when the true model is the full model. Analytical

expression will be derived. It can also be shown that under certain conditions, the 

generalised mean squared error decreases when the order p increases in the Karhunen- 

Loeve expansion.

To make the notation clear, since the number of testing points is always assumed 

to be n, we omit the subscript n from the covariance matrix K.  Furthermore, since 

both the full and the reduced version of the covariance matrix/vector will be involved 

in the calculation, we distinguish them by using the subscript / .  Thus K, k and 

K f , k f  represent the covariance matrix/vector from the reduced model and from the 

full model, respectively.

Under the reduced model, y(t) = aTys,aT = kTK  as explained in equation 4.1.6. 

Under the full model, using the same calculation, the prediction at time point t can 

be written down as y{t) =  bTys, where

Both y(t) and y(t) are the linear combination of the centered Gaussian process ys. 

Hence

(4.2.1)
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Now the mean squared error for the reduced model can be calculated as 

MSE (y(t))

=  £[(£(*) ~  Vi*))2} = £[(£(*) -  E (v(t)) +  E(y(t)) -  y{t))2]

= E l(y(t) -  E (y(f)) +  E{y(t)) -  2/(0)2] =  Var(£((0)) +  Var(y(t)) -  2cov(y(t),y(t))

= k + Va,T(aTys) — 2cov(aTys , 2/00) =  K +  f a ~  2aTkf

= K + kTK - l K f K - lk - 2 k TK - lkf

Remark 4.2.1. The mean squared error can also be calculated from the MSE con

ditioning on the sampling points (conditional MSE). The conditional MSE can be 

decomposed as the conditional variance and the square of the conditional bias, since

USE{y{t)\ys) = E[(y{t) -  y(t))2\ys] =  Var((y(t) -  y(t))\ys) +  {E[y{t) -  y(t)\ys]}2 

= Vai(y(t)\ys) +  {E[y(t)\ys\ -  E[y(t)\ys}}2

= Var(2/(0 |ys) +  [y(t) -  y(t)}2

Then the unconditional MSE is the expectation of the conditional MSE.

E[USE(y(t)\ys)]

= E[Vai(y(t)\ys)] +  E[y(t) -  y{t)}2 = E[Vax(y{t)\ys)] +  E[y{t)2 +  y(t)2 -  2y(t)y(t)} 

= Var(y(t)) -  V&r[E{y(t)\ys)} +  Var(y(t)) -  (E[y{t)})2 +  Var(y(t)) -  (E[y(t)])2 

-2cov(y(t),y(t))  +  2E[y{t)}E[y{t)\

= Var(y(t)) -  Vai[E{y(t)\y3)] +  Var(y(t)) +  Var(y(t)) -  2cov(y(t), y(t))

=  Var(y(t)) -  Var(y(t)) +  Var(y(0) +  Var(y(t)) -  2cov(y(t), y(t))

= Vai(y(t)) +  Var(y(t)) -  2cov(y(t), y(t)) = k, +  Var(aTys) -  2cov{aTys , bTys)

= K + aTK f a - 2 a TK f b = K + kTK - 1K f K - 1k - 2 k TK ~ 1K f K j 1kf  , 

=  K + kTK - 1K f K - 1k - 2 k TK - 1kf



129

Notice that the expectation of the conditional variance E\Vai(y(t)\ys)\ is expressed 

as E\Vai(y(t)\ys)] = Vai(y(t)) — Var(y{t)), which does not depend on the truncation 

at all. It is the expectation of the conditional bias that plays a role in affecting the 

MSE when the order p in the truncated Karhunen-Loeve expansion is changed.

Remark 4.2.2. Using the same method, the MSE for y(t) can also be calculated, i.e. 

the mean squared error for the full model when the true model is the full model. 

Notice that under this setting, the unconditional MSE and the conditional MSE are 

the same.

M S E ( m )  = E [ ( m  -  y i t ))2]

=  Var(y((t))) +  Var(y(t)) -  2cov(y(t), y(t))

= k -t- Var(6T7/5) -  2cov(6t t/5, y(t))

=  K + bTK f b - 2 b Tkf 

= K + kTf K j lK f K j lkf - 2 k Tf K j lkf  

=  k  —  k j  K j xkf

E[USE(y(t)\ys )} = Var(y(t)) -  Var(y(t))

= k -  Vai(bTys)

= n — bT K f b 

— n — k ^ K j lkf

In the experimental design literature, e.g. Sacks and Ylvisaker (1978), Muller- 

Gronbach (1996) and Mukherjee (2006), and machine learning literature, e.g. Opper 

and Vivarelli (1999), Sollich (1999) and Rasmussen and Williams (2005), are inter

ested in the generalised mean squared error, which is defined as the integral of the
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MSE of the prediction with respect to t. For the experimental design, the optimal 

design points can be chosen so that the generalized mean squared error is minimised.

The generalized MSE for prediction using the truncated Karhunen-Loeve expan

sion of order p can now be calculated. We will first give some formula for the inte

gration of some quadratic forms. With notation

4*u ( l̂)? ^14(^2)) )

$ (t)T =  (<£1 (t), tj>2(t), ■■■ , 0P(4))

$  =  ($(*,), $ ( i2), $ ((„))

k  =  $ t A $(t)

B = {bij} = A5>A<E>r A

A quadratic form based on a fixed matrix A =  {%•} can be calculated as

f  kTAkdt = f  &(t)TA$A<&TA<fr(t)dt = f  ' S ^ ' S ^ b ij(f>i(t)(f)j(t)dt
i£S j€S

=  EE bij / <t>j(t)<t>j(t)dt = — trace(jB)
i€S j€S VT i£S

= trace(A $A $TA)

Another quadratic form based on the fixed matrix A  can be expressed as 

/  kTAkfd t
' T

=  L E E  CLijkikfjdt — E E a« E
^ T  i e S  j £ S  i £ s  j £ s  u = l  ^T

P  P

— ^   ̂ ^   ̂®i j  ^   ̂A u (j)u ( t i ) A u <pu ( t j ' )  ^   ̂ ^   ̂&ij  ^  ^
i £ s  j £ s  u = l  i £ s  j £ s  11 = 1

P P P

= ^ u i U ^ u i t j )  =  ^ 2  Xl4>lMu = ^2{K(pu)TA ( \ u(f)u)
u = l  i £ s  j £ s  u = l  u = l

= trace(A<FA(A$)T)



For the integration involving the variance ft, we obtain

oo oo
I ndt = / ^ 2 \ u(f)2u(t)dt = y 2 x ,

U=1 U=1
‘U (4.2.2)

Therefore, the generalised MSE, using the truncated Karhunen-Loeve expansion, 

can now be expressed as

As is mentioned in remark 4.2.1, the MSE can be decomposed into two parts: 

the expectation of the conditional variance and the square of the expectation of the 

conditional bias. Since the expectation of the conditional variance does not depend on 

the order p in the truncated Karhunen-Loeve expansion, the change in the MSE due 

to the different order p is caused by the change in the expectation of the conditional 

bias. After integrating the MSE to derive the generalised MSE, the change in the 

generalised MSE for the different order p should also be caused by the change in the 

conditional bias. Therefore it might be expected that when the order p increases, the 

bias decreases, and therefore so does the generalised MSE. The conditions for this 

to hold are not obvious and the rest of this section is devoted to finding a tractable 

version. To make the notation clear, the truncated covariance matrix/vector of order 

p will be denoted as K p,kp, while the true covariance matrix/vector is still denoted 

as Kf, kf.

Denote the generalised MSE for the order p as J*r  MSEp(y(t))di and

oo
MSE(y(t))dt =  y ^ A j -trace (A $ (2 A '-1 -  K ^ K f R - ^ A )

K  =  $ r A<S
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where 4>p is a p x n matrix comprising of the first p eigenfunctions, and (f)p+1 is a 

n  x 1 column vector comprising of the (p +  l) th  eigenfunction. For the simplicity of 

theorem 4.2.1, the following notations are further defined.

A  =

C  =  ^ +1A'-1EP/C -V P+, 

b =  4>l+ l K ; ; 'd > p + i

d =

S  =  2 A b - C d - C  +  b - b d

A =  S 2 -  16.462

Then, following the calculation in appendix 7.2, the difference of the generalised 

MSE between the order p and the order p +  1 is,

f  MSEp(y(t))dt -  j r MSEp+1(y(t))

'V+i r\2 ( r >i 2[\+ i(2 ^  ) +  ^p+iS +  2A](1 +  Ap+10p+1A'“ 10p+i):

Since & is a quadratic form of a positive definite matrix K ~l , 6 > 0 if 0p+i is a non

zero wector. Except for the constant term — r ,̂ which is positive, the(i+Ap+i0£+iKp 4>p+iy
remaining term is a quadratic form of Ap+i, when b > 0.

It is expected that the difference of the generalised MSE between the order p and 

the order p +  1 is non-negative, so that the generalised MSE is a non-increasing func

tion of the order p. The conditions required for the above statement is summarised 

in theorem 4.2.1.
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T h eo rem  4.2.1. If  one of the following statements is true, the change of the gener

alised MSE from the order p to the order p + 1 is non-negative, i.e.

JT JT
[  MSEp(y(t))dt — [ MSEp+i(y(t))dt  > 0 (4.2.4)

(i) I f  A  > 0 ,  A < 0 ,  S  >  0 ,  or

(ii) I f  A >0 ,  A <  0 ; S  <0, or 

(Hi) I f  A  >  0 ,  A > 0 ,  S  > 0 ,  or

(iv) I f  A >  0 ,  A > 0 ,  S  < 0 ; A p + i  < x \ ,  or

(v) I f  A  > 0, A > 0 ,  S  < 0 ; A p + i  > x 2, or

(vi) I f  A < 0 ,  A p + i  ^  X 2

where x\ and x 2 are the roots for the quadratic equation (2b2)x2+ S x + 2 A  and X\ < x 2.

Proof. Since all the eigenvalues of the Fredholm integral equation are positive, as is 

mentioned in appendix 7.1, Ap+i > 0 ,  and therefore   .rp+L - > 0- Notice
( l  +  Ap-|_i <Pp^i^p  0 p d - l)

that b = 0  if and only if 4>p+\ is a zero vector, which also implies that A = C = d = 

S = 0 .  Hence

non-negative. Using the properties of the convex parabola, the other conditions are

Remark 4.2.3. When f>p+1 is a zero vector, 6 =  0. It means that there is no increase 

or decrease to the generalised MSE when the order p changes to the order p +  1. The

(4.2.5)

When 6 > 0, it is enough to show that when x  > 0, the quadratic form (2b2)x2 +  

Sx  +  2A > 0. Since 2b2 > 0, the quadratic form is a convex parabola. Geometrically, 

when A < 0 as stated in the condition (i) and (ii), there is no intersection between 

the parabola and the horizontal axis. This implies that the quadratic form is always

shown similarly. □
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rest of this section contributes mainly to the other case when b > 0, i.e. not all the 

elements of (f>p+1 is zero, since this is the more confusing case and worths more effort. 

Therefore, in the rest of the section, unless specified, we always assume that b > 0. 

Remark 4.2.4. The above conditions are written down as the disjoint sets. The first 

three conditions can also be expressed as A < 0 (implying A > 0) and A > 0, S > 0, 

which have some overlapping.

0.19

0.185

IU105

0.175

0.17

5 10 15 20 25 30 35 40 45 50
order p order p

Figure 4.1: (Left) Reason checking for the difference in the generalised MSE for the 
Brownian motion due to the change of the order from p to p+1, when n = 1, t =  |  and 
1 < p  < 51. 1: A > 0, A < 0, S > 0; 2: A  >  0, A < 0, S  < 0; 3: A > 0, A > 0, S > 0; 
4: A > 0, A > 0, S  < 0, Xp+i < x\\ 5: A  > 0, A > 0, S  < 0, Ap+i >  X2 ; 6: 
A < 0, Ap+i >  X2 . (Right) the generalised MSE for the posterior prediction when 
n = 1, t =  |  and 1 <  p < 51.

From figure 4.1, figure 4.2 and figure 4.3, it can be seen that in the Brownian mo

tion on [0,1], it is the first three conditions that decides the change of the generalised 

MSE when the order in the truncated Karhunen-Loeve expansion changes. When 

there is only one condition (n = 1), the change in the generalised MSE is mainly due 

to S > 0 . When the number of the prior observations increases to n = 30 or even

n =  100, the reason for the change moves to A < 0.
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Figure 4.2: (Left) Reason checking for the difference in the generalised MSE for the 
Brownian motion due to the change of the order from p to p +  1, when n =  30, 
U = 1 <  i <  30 and 30 <  p < 80. 1: A > 0, A < 0, S  > 0; 2: A  >  0, A < 0, S  < 0;
3: A > 0, A > 0 ,5  > 0; 4: A  >  0, A > 0 ,5  < 0,Ap+i < m; 5: A > 0, A > 0 ,5  < 
0, Ap+i > X2 \ 6: A < 0, Ap+i > X2 ■ (Right) the generalised MSE for the posterior 
prediction when n = 30, U = 1 < i < 30 and 30 < p < 80.

However, theorem 4.2.1 is somewhat difficult to use in application, since there are 

six conditions in total to check whether the generalised MSE increases or not. Theo

rem 4.2.2 provides a simplified version of theorem 4.2.1. If two additional constraints 

are placed on ^  and d, the generalised MSE does not increase when p increases.

T heorem  4.2.2. If  ^  > Ap+i and d < I, the change of the generalised MSE from 

the order p to the order p-\ -1 is non-negative, i.e.

J  MSEp(y(t))dt -  J  MSEp+i(y{t))dt > 0 (4.2.6)

Proof Since K ^ TpK2p% K ^  is non-negative definite, d > 0. If d further assumes to

be d < 1,
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Figure 4.3: (Left) Reason checking for the difference in the generalised MSE for the 
Brownian motion due to the change of the order from p to p +  1, when n = 100, 
U =  ^j-,1 < i < 100 and 100 < p < 150. 1: A > 0, A < 0, S  > 0; 2: A > 
0,A  < 0 ,5  < 0; 3: A > 0, A > 0, 5  >  0; 4: A  >  0, A > 0, 5  < 0,Ap+i <  xx\ 5: 
A > 0, A > 0 ,5  < 0, Ap+i > X2 \ 6: A  < 0, Ap+i > £2- (Right) the generalised MSE 
for the posterior prediction when n =  100, t{ =  , 1 < i < 100 and 100 < p <  150.

J MSE„(j) ( t ) ) d t -  J  M S E  P+ i ( y ( t ) )

 1___________
(1 +  \ p+i4>l+1K J; 1<t)p+iY

+2XI+1(4>1+1k ; ^ p+1) ( ^ 1k ; 1̂ a ^ pk ^ e pk ; 1<i>p+1) 

- 2 \ 1 +M tp+̂ t.pk ; ^ p+ i)]

+ W +i « +i ^ “Vp+.) +  2A^+1( ^ +1a: ; V p+i )2 -  
i

-  (1 + V ^ - h V ^ + i )2

+ l ^ 3P+M l +iK ~ 1<pp+1)2] > 0
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The second inequality uses the condition that ^  >  Ap+i. Since C > 0 and 

Ap+1 > 0, A > 0. □

Remark 4.2.5. In theorem 4.2.2, the condition £  >  Ap+i can be explained as follows,

A =

Ap+1

Since, A* > Ap+i, 1 < i < p, > I. If 4>J(^^-AP — Ap)4>p is positive definite,

and its multiplication with the other two positive definite matrix K ~ l and K ~ l YipK ~ l

is still positive definite,

Ap+1

=  A p + i ( f p+lK p lY,pKp 1(f)p+1) =  A p + i C

When n = 1, all the key terms in the difference of the generalised MSE are the 

scalars, including A, C, b, d , S  and A. Theorem 4.2.2 can be further simplified to 

equation 4.2.7 exhibited in theorem 4.2.3.

Theorem  4.2.3. When the number of the design points n = l ,  if

<  ( £ X i U t ) 2}2 (4.2.7)
i=1 i—1

the generalised MSE expressed by the truncated Karhunen-Loeve expansion is a non

increasing function ofp,  i.e.

J  MSEp(y(t))dt — J  MSEp+i(y(t))dt > 0, p > l  (4.2.8)
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Proof. When n = 1, i.e. we only have one prior observation at time t. Using theorem

4.2.2, if it can be shown that d < 1 and £  > Ap+i, the generalised MSE is a non

increasing function of p. 

d < 1 can be simplified as

, , , q.

i z u  u r n 2 ~  ( ’

It is equivalent to

4>P+l(t)2 j 2  \ 2m 2 < (4-2.io)
i= 1 t=l

As to ^  > Ap+i, it always holds for n = 1, since both K ~ l and K ~ l Y>vK ~ l are the 

positive scalars. Then ~  > 5Zi=i because Ap+i < Ai5 1 < i < p. □

The upper bound of the generalised MSE can also be calculated, when its expres

sion using the truncated Karhunen-Loeve expansion is a decreasing function of the 

order p. The upper bound is obtained when the order p equals to the number of the 

design points n. The result is being summarised in theorem 4.2.4.

Theorem  4.2.4. When the generalised MSE expressed by the truncated Karhunen- 

Loeve expansion is a decreasing function of the order p, i.e.

J  MSEp(y(t))dt — J  MSEp+i(y(t))dt > 0, p > n  , (4.2.11)

where n represents the number of the design points, there exists an upper bound for 

the generalised MSE.

rt rt OO

/  MSEp(y(t))dt < /  MSEn(y(t))dt = V '  A* +  irace[Ep(4>j4>p)_1], p > n  ,
i=p+l

(4.2.12)

where £ p =  K f  — K p and 4>p is a p x n  matrix comprising of the first p eigenfunctions.
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Proof. The condition p > n  guarantees the existence of the inverse of the covari

ance matrix using the truncated Karhunen-Loeve expansion. W ith fixed n, when 

f T MSE(y(t))dt  is a decreasing function of p (p > n), an upper bound for the gen

eralised MSE can be obtained. The upper bound is obtained when the order of 

the Karhunen-Loeve expansion p achieves its minimum possible value, which is the 

number of the prior observations n, i.e.

When n = p, the generalized MSE can be further simplified, since the inverse of K  

can be calculated matrix by matrix now, i.e.

Therefore, the integration of a quadratic form based on the symmetric fixed matrix 

K ~ l can be calculated as

=  trace(Ap)

Meanwhile, when n = p, using the same expression for K ~ l , the integration of the 

quadratic form based on the fixed matrix K ~ l K f K ~ l can be calculated as

(4.2.13)

trace[Ap$ pA-J>1(A,,$,))7’] =  trace[Ap$ p($ p) '(Ap) 1 (4>p ) '(<E>p)r Ap]

trace[Ap$ pA'p- 1A'/ A'p- 1(ApOp)T]

trace[Ap$ p($ p) - 1(Ap) - 1( $ J ) - IA-/ ($ p) - 1(Ap) - 1( $ J ) - 1(3-P) X ]

trace[($p 1)r A 7$p 1] =  iiasx[Kf ^ 1 

trac e lA T /^ a y T 1]
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Hence, we can conclude that in the case of n = p,

„  oo
/ MSEn(y(t))dt =  Ai +  t r a c e -  trace(Ap)

J r  i=P+i
OO

y  A* — trace(Ap) +  trace[^/(4>p <$p)_1]
= P + 1  

OO

At -  trace(Ap) +  trace[Ap(<l>p 4>p)-1] +  trace [Ep($p<f>p)_1]
= P + 1

OO

^  A* -  trace(Ap) +  trace[(<f>p )~l $pA p$ p$ ~ 1] +  trace[Ep($p $p)_1]
i = p + l

oo
y y  Ai +  trace [Ep($p$p) :]

i = p + l

□

Example: The conditional Brownian m otion on [0,1] w ith  y( 1) =  a

There is one observation here at time 1, i.e. n = 1 and t =  1. Using theorem 

4.2.3, it only needs to be shown that

, (4.2.14)
i= 1 i= 1

where eigenfunction </>*(£) =  \/2sin[(z — |)7r£], z >  1 in the Brownian motion.

When t = 1, 4>i(l ) 2 =  2, i > 1.

p p

0P+iW2y ^ \ 20i(t)2 =  4 ^ A 2
i = l  i = l

C £ k m 2?  =  4 ( ^ a 4)
i = l  i = l

Since ( I X ,  A*)2 =  J X i  +  E w  ^  > J X i  A2,

^ +1(1)2E A ^ ( ! ) 2 < E ^ - f 1)2]2 (4 2 -15)
1=1 i = l
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Therefore, the generalised MSE is a non-increasing function of p based on one 

prior observation at time 1. Furthermore, the upper bound for the generalised MSE 

can be calculated using theorem 4.2.4. When n — 1 and p = 1

S ,  =  K / ( 1 ) - K ' 1(1) =  1 - A 1^ ( 1 )  =  1 - 2 A 1

=  0?(1) =  2
OO OO 1

V A i  =  A; -  A, =  /  Vai{W(t ))dt  -  A, =  -  -  A,
i=2 »= 1 ^

Hence, for the Brownian motion with y{ 1) =  a, the upper bound for its corresponding 

generalised MSE is

pi i i   o \
/  MSE(y(t))dt  <  -  -  A, +  — —- i  =  1 -  2A, (4.2.16)

J o  1 1

This seems to be new.

4.3 Markovian processes and the Gaussian regres

sion model

Although the analytical form for the generalised MSE can be derived based on the 

truncated Karhunen-Loeve expansion, the inverse for the truncated covariance matrix 

K  requires the order of the Karhunen-Loeve expansion p at least not less than the 

number of the observations n, i.e. p > n. However, in practice, we sometimes

hope that n > p. Moreover, when p > n, with large n and even larger p, it is

computationally expensive to calculate the inverse matrix. If p can be chosen so that 

p < n for fixed n, computational time could be saved. In order to solve this inverse 

matrix problem, two suggestions are put forwarded in this section. The first method
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Figure 4.4: The generalised MSE for the conditional Brownian motion based on 
y( 1) =  a. Blue line: the change of the generalised MSE with the order p; Red line: 
the upper bound for the generalised MSE.

can be used when the process is Markovian. Under the Markovian model it can be 

shown that p can be chosen to be any number as long as p > 2. The second method 

involves the extension of the reduced model from the truncated Karhunen-Loeve 

expansion to the Gaussian regression model, which has been discussed in chapter 3. 

The added independent noise in the Gaussian regression model provides flexibility 

for the inverse. In the machine learning literature (See, for example, Rasmussen 

and Williams (2005)), researchers further assume that the true model is indeed the
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Gaussian regression model, as well as the model for the prediction. Their results will 

also be stated in equation 4.3.8.

A process y( t )  is called a Markovian process, if the process only depends on the 

latest information, i.e.

p ( y ( t ) \ y ( s ) , y ( r ) )  = p(y ( t ) \ y ( s ) )  r  < s  < t  (4.3.1)

Processes, like the Brownian motion or the Ornstein-Uhlenbeck, satisfy the Markovian 

property.

In order to get the posterior prediction y( t )  for y( t ) ,  the inverse truncated co- 

variance matrix K ~ l comprising of the sampling points needs to be calculated. If 

the number of the sampling points n is too big, the inverse matrix is usually not 

analytically tractable. However, for the processes satisfying the Markovian property, 

the calculation for y( t )  can be simplified.

Assume that the process lies in the interval T  =  [to, t n+1] with to < t \  < t 2 < £3 <

•' • < tn < tn+1 where £1} t2, • • ■ , tn are the time points for the sampling data. Now we 

try to calculate the posterior distribution p(y(t)\ya) = p(y(t)\y(t i) ,y(t2), • • • ,y{tn)), 

where U < t  < ti+1,1 < i < n —1. It can be shown that p(y{t)\y(t i),y(t2), • • ■ , y(tn)) — 

p(y(t)\y(U),y(ti+i)), since

p { y { t ) \ y ( t i ) , y ( t 2) , ' - -  , y ( t n))

=  p [ y ( t ) , y ( U + i ) , y ( U +2), - ■ ■ , y ( t n) \ y ( t i ) , y { t 2) , - ’ - , y( t j ) ]
p[y{ t i+ l ) , y ( t i+2) , - - -  , y ( t n) \ y { t i ) , y { t 2) r -- , y(U)]

p [ y ( t ) , y ( t i + i ) , y { t i+2 ) , - - ’ , y { t n)\y(U)] _  ^  ^ n  u  m
— — TTi— \— ji— n--------TTTTTTvi— — p[y\t)\y\U), yyU+i), y{U+2 ), • • • ,y(tn) J

p[y{ t i+i ) ,  y{U+2): • ■ • , y{ tn) \y( t i ) \
p[y(U+2 ) ,  y ( t i+3 ) ,  • • • , y ( t n) \ y ( t i ) , y ( t ) , y { t i+1) ]p[y( t i ) } y ( t ) , y ( t i+1)]  

p[y( t i+2 ) , y ( U + 3 ), • • • , y ( t n) \ y ( t i ) , y ( t i + i)]p[y(t i ) ,  y ( t i+1)]
p[y{U+2 ) ,  y{U+3 ) ,  • • • , y( tn) \y( t i+i ) ]p[y( t i ) ,  y ( t ) , y { t i+1) ]

p[y(U+2), y{U+3), • • • , y(tn)\y{U+i)]p[y(ti), y(t i+1)]
= p[y(t)\y(U),y(ti+i)]
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If one of the bounds of t is one of the boundary points, i.e. to < t < t\ and tn < t <  

t n+1, using the same argument, it can be derived that p(y(t)\y(ti), y(t2), • • • , y(tn)) = 

p{y{t)\y(ti)) and p(y(t)\y(ti)}y(t2) r  "  ,2 /(0 )  =  P(2/Wl2/(0) respectively. In short, 

the density function of y(t) conditional on all the sampling data is the conditional 

density function depending on the nearest sampling points of t.

Now the posterior mean can be calculated. For U < t  < U+i, 1 < i < n — 1,

y(t) = E[y(t)\ys]

= E[y(t)\y(U),y(ti+i)]

—  » ( ^ , i ^ i + l , i + l 2 / i  t̂,i+l̂ i,i+iyi t̂,î i,i+iyi+l T  ^ , i + l ^ i , i 2 / i + l )  ,

where kt:i = cov(y(t),y(ti)),kitj = cov(y{ti),y(tj)) and Aiii+i =  kitiki+1>i+l -  fc?i+1 

For t0 < t < ti and tn < t < tn+u y(t) = E[y(t)\ys] = E[y(t)\y(ti)] = Cy ^ . 

and y(t) = E[y{t)\yhn] = E[y(t)\y(tn)] = Cy j £ respectively. Since only 

the nearest points are required in the Markovian model, K  is at most 2 x 2  (n =  2). 

Then any p > n =  2 satisfies the condition for the inverse of the truncated covariance 

matrix K.

For simplicity, T  = [0,1], i.e. t0 = 0 and tn+1 =  1. Under the Markovian
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assumption, for U < t < ti+1 (1 < i < n — 1), denote

$ (t)T =  02W, 0PW ) $ ( ti+i))

k(tii ti+i) = [$(ti,ti+1)]TA$(t) kf{t i , t i+1)T = (ktti, kt,i+1)

K ( M m ) =  [$ ( M m )]TA [$ (M m )] ( ** ^ +1 ]

At the boundary points, <$(i0,ti)  =  $ (ti), kf (t0,t i)  = kt>\ and Kf(to,t i)  =  /ci,i for 

0 t <C t\ and — 4?(tn), kj(tni tn+i) — ^t,n  mid K j( tn,tn+\) — kn)Tl for

tn < t < 1.

Therefore, for U < t < ti+i

MSE (y(t)) = « +  [k(tiAi+\)]T[K{tiAi+\)]~lK f{ t iAi+\)[K{tiAi+i)]~lk{tiAi+i) 

-2[k{tu t i+1)]T [K(U, ^ +i)]_1/c/(^, t i+1)

=  k +  $ ( t)TA $(^, £i+i)[AT(^, ^ +1)]_1ATy( ,̂ ^+i)[AT(^, ^+i)]_1[$ fe  *i+i)] 

-2 $ (£ )TA$(£i, ^ +i)[AT(^, **+i)]-1fc/(J», ii+i)

Now assume that A (^ ,^ +i) =  {auv}, which is a p by p matrix, then

rU +1 /*^+i  r ^
/ $(t )TA(ti , t i+l)$ ( t )d t=  2_y /  J auv<l>u{t)<l>v(t)dt

J t i  J u  u v

rU +1= EE / <i>u (t)< i>v(t)d t =  1T[A(U, ii+i) O B(t», *t+i)]l ,

U V ^

where

i  =  ( i ,  i, i, , i ) T ,
\  /  n x l

Pt i+l
idit ti+i) — { I  tpu(jj)(pv(t')dtyuv

J t i

(A o B)ij = AijBij,o represents Hadamard (or Schur) product

r A3>(t)
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In the current case,

A ( U , t i + 1) =  { a u u } =  A $ ( t i , t i + i ) [ K ( t i , t i + i ) ] ~ 1K f ( t i , t i + i ) [ K ( t i , t i + i ) ] ~ 1 [ <&( t i , t i + i ) ] T A

(4.3.2)

On the other hand, i f  E( t i , t i+1 )  =  {euv} =  [ K f c ,  t»+1)]—1 ,

pti+i

Jti
/ ti + 1 \  \ ________x__V

^   ̂^   ̂€-uv ^   ̂^m0m(^)</>zn(^u)cov(tu, £)d£

•i u v m
pU+i

— ^  ^ ^  ^ &uv ^  ^ ^ m $ m { t u ' )  I  4 * m { t ^ C O v ( t v , t ' j d t
u v m  ^

= E A»EE &uv$m (tu)Dm i j v i  ^ i + 1)

m u -u
=  E A m $m(tii ti+l)E(ti} £j_)_i)

m
=  trace($(^, £i+i)£ (^ , t i+i)D (ti5 E+i)A) 

where for 1 < i < n — 1

pti + i
Dm (tv i t i , E+l) — I (f)m(t}cOv{tVit'}(Lt

Jti
D m { t i i t i + l ' )  ( £ > m(tii tii U+1), -E m (E+l ) tii E+l)^

( f r m i t i i t i + i )  0m(E+l)^

■D(i», E+i) ( ^D i ^ t i i  t i + i ' ) j Z)2(E}E+i)) 5 D p ( t i i  E+i)^

At the boundary point, 0 <  t < t\

& m { t i i  t i + 1)  4 * m { t \ )

D(ti , t i+1) =  ^Di(£i; 0, £i), D 2(ti; 0, ti), ■••,  Dp(£i;0, £i)^
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while tn < t < 1

ti+l) — 0m(^n)

D(t i , t i+1) =  ( p x i t ^ tn ,  1), D2{tn\ tn, 1), • •• ,  Dp(tn]tn, 1))

Hence the generalised MSE can be expressed as

n

MSE (y(t))dt = k, +  E 1 [A(£i, ^i+l) ° B(ti, 1
i= 0 
n

- 2  ^  trace($(^, £i+i)£ (^ , t i+l)D{tu ti+1)A)
i=0

where

A(th ti+1) =

£ (M i+ i)  =  AT-1( ^ ,^ +1)

The other way of solving the inverse matrix problem is to use the Gaussian regres

sion model, which has been mentioned in chapter 3. Now the reduced model contains 

the noise term, as well as the truncated Karhunen-Loeve expansion, i.e.

p

y(t) = ^ 2  +  Tt (4.3.3)
i=  1

where {£*} ~  i . i .d.N(0,1), {rt} ~  i . i.d.N(0,a2) and £i,rt independent. Hence K  = 

$ TA$ +  a2I. The formula for the generalised MSE remains the same form except for 

the change in K , i.e.

OO

MSE (y{t))dt = Aj — trace(A$(2i:('_1 — K _1 K j K ~ 1)$ t  K)
i = 1

K  =  $ t A $  +  <t2/
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There are two ways to estimate the hyperparameter a 2. Assume that the length 

of the interval T  is T. If we know the covariance function

a2T  = J  a 2d t  — J  Var( r t ) d t
r 00 p
/  V ar(J^  y/X

i=1 i=l

=  Z A<
i=p+1

Vax(y(t))dt — trace(A)

It is equivalent to

The approach to estimate a2 using equation 4.3.4 is called the eigenvalue approach. 

If the covariance function is not known, the other approach, called the maximum 

likelihood approach can be used. The likelihood function for ys is expressed as

p(ys) =  , 2 n r i exP [ - ^ J ( $ r A4> +  a2I)y,} (4.3.5)
(27t)2 |det($TA$ +  <t2/)|2 2

a2 is chosen so that p(ys) is maximised. Or equivalently, minimize —log(p{y))

-log  (p{y)) = ilog[|det($TA$ +  a2I)~l |] +  ^{yJ{$T A$ +  (j2I)~ lys] (4.3.6)

However, the estimator of a2 roughly decreases with the increase of the order p. 

When the first p eigenvalues can explain almost all the cumulative expected variance, 

i.e. —» 1, the estimator of cr2 becomes very small, i.e. a2 —> 0. This can bez î = 1

seen from equation 4.3.4. When the covariance function is known, equation 4.3.4 can 

also be written as
V°° \ - - V p A- 1 -  p b  x*

(j2 = ^ t=1 1 r r ^ l=l- l- =  2ri=l (4.3.7)
T



149

y"P y. 9
Therefore, when * —> 1, a 1 —> 0. When the covariance function is not known, 

which means that the likelihood method will be applied to find the estimator of cr2, 

the trend in the change of the estimator of a 2 with respect to the order p remains more 

or less the same. Again, the higher the p is in the model, the smaller the estimator 

of a2 is. Refer to figure 4.6 for an example.

For the Gaussian regression model, the covariance matrix K  is expressed as

K  =  <FTA<f> +  a21

It can be seen tha t the noise is only added to the diagonal element of the truncated
t p y.

covariance matrix K , but not the off-diagonal element. When * is not very2̂ i=1 Ai
close to 1, to the diagonal element of A, cr2 tends to capture the true covariance func

tion in addition to the truncated Karhunen-Loeve expansion, but to the off-diagonal 

element, only the truncated expansion is used without the added noise cr2. Under
y p  A

relatively small , the quality of the approximation using only the truncated

Karhunen-Loeve expansion could be poor. This unbalance covariance matrix struc

ture between the diagonal element and the off-diagonal element might result in a big
y p

generalised MSE. When p is increased so that approaches 1, it is expected thatZ-ui= 1 Ai
the unbalanced structure due to a2 on the covariance matrix becomes smaller, since 

the estimator for a2 decreases. Thus the generalised MSE also becomes smaller.

When both the true model and the reduced model are the Gaussian regression 

model, i.e. K f  = K  = $ TA$ +  a21 and kf = k = <FTA$(£),

USE{y(t)) = n - k F K - ' k  

MSE (y(t))dt = traceA — trace[A<f>(<f>TA<f> +  cr2/ ) _1<FTA]

=  tra c e [A -A $ ($ TA$ +  o-2/ ) - 1<f>r A]
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Hence,

J  MSE(y(t))dt — trace(A-1 +  (4.3.8)

Equation 4.3.8 uses the matrix inversion formula

(A +  U W V T)~1 = A~l -  A~l U(W~l +  V t A - 1U)~1V t A - 1

The following example analyses the generalised MSE for the Brownian motion, in 

terms of the analytical solution as well as the Karhunen-Loeve approximation. Notice 

that the Brownian motion is a Markovian process. The computational time will be 

dramatically reduced, since the dimension of the truncated covariance matrix K  is 

at most 2 x 2 .  In the second step of the analysis, the Gaussian regression model will 

also be used as the reduced model to investigate the change in the generalised MSE.

Example: The Brownian m otion on [0,1]

The analytical solution to the generalised M SE and the optim al design  

points in term s of the generalised MSE

The analytical solution to the generalised MSE of the Brownian motion is de

rived in the same way as that of the Ornstein-Uhlenbeck process in Rasmussen and 

Williams (2005). The covariance function of the Brownian motion is expressed as 

cov{y(ti),y(tj)) = Assume 0 =  t0 < t x < t2 < h  < ■ • • < tn < tn+l =  1

where t\, t2, • • • , tn are the sampling points, then for U < t  < ti+1, 1 < i < n — 1

1 î) ti&i

=  t i t y i + i  t \ y i  T t i ( t  t i S f l i  T U ( 5 i

y{ t )  =  +  i 1 -  t M ^ + l )  =  Tiy{ti) +  (1 -  r i ) y ( t i+i)
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8lwhere 5{ = ti+i -  tu 5[ = t i+1 - 1 and r* =

For the boundary points 0 < t < t\ and tn < t < 1, y(t) = and y(t) =

lfny(tn) =  y(tn) respectively.

Now the mean squared error can be calculated.

MSE(y(t)) =  Vax(y((t))) +  Var(j/(2)) -  2cov{y(t),y(t)) (4.3.9)

For U < t < ti+1, 1 < i < n — 1

MSE(y(t)) = t +  rfti +  (1 -  n^U+i  +  2r*(l -  r^U -  2 r ^  -  2(1 -  n) t

= - t -  rfti +  t i+1 -  2riU+i +  ti+lr1 +  2r{t
=  (t -  tj)(ti+1 -  t) 

t{+1 ti

For 0 <  t <  t u MSE(y(t)) = t + %h  -  2g  =  For t„ < t < 1, MSE(j/(t)) =

t T tjl 2̂7̂, t

Hence the generalised MSE can be expressed as

*1 n  r t

/  USE(y(t))dt = J 2  / MSE(y(t))dt
Jo i = Q Jt i

f t \  n~ t  rU+l f t
= /  MSE(y(t))dt + Y^  / MSE(y(t))dt+  /  USE(y(t))dt

Jo i—\ J t i  J  tn
1 ^ ,  , 2 t\ (1 ~ t nf

2 =  1

1 No (! -  t n f

2= 0

The sampling points {U}, 1 < i < n can be chosen, so that the generalised MSE is 

minimised. This can be performed through the differentiation of the generalised MSE
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with respect to each time point U

1 < i < n — 1

[  MSE{y(t))dt = 0 => 4£n =  tn_i +  3
Otn Inn J o

After the rearrangement, U = g^-j- and the minfjg1 MSE(#(t))d£]3n+l 2(3n+l)
1

The generalised M SE for the Brownian m otion under the Markov as

sum ption

Under the Markov assumption, the covariance matrix K  and Kf  are either 2 x 2  

matrix or are scalars depending on whether the nearest sampling point is a boundary 

point or not. The generalised MSE is expressed as

For the Brownian motion, the main term B{t i , t i+1) and D(U,ti+i) can be calculated

MSE (y(t))dt = k +

n

2 ^  trace($(ti, t i+i)E(U, t i+1)D(U, t i+i)A)

where

A(ti , t i+1) =  A $ ( t i , t i+i)[K(ti ,t i+1)] 1K f (ti, t i+i)[K(ti, t i+1)] 1̂ T(ti , t i+i)A 

E(U,ti+1) =  [K{ti,ti+1)]_1

as follows

/ h+1  r h + 1  2

0m(t)min(£i,t)d£ =  j  V2sin[(ra -  -)nt]Udt

=  V 2 -  t± T —  [cos((m  -  i ) 7 rti) -  c o s ( (m  -  i)7 r f i+ i)]
(m  — 7; 7T 2 2
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rn+i  r l i+i  j
Dm{ti+i \ t u ti+l) =  / (f)m(t)mm(ti+1,t)dt = / \/2sm[(m -  -)irt]tdt

Ju Jti *
y / 2  f ti+1 1

td[cos((m — g)71’̂ )]

icos((m -  ^)7rtt+i) -  *iCos((ra -  )̂7rt*) 

.((m -  i)7rti+i) -  sin((m -  )̂nU))]

(m -  !)*■
V2

(m -  A)n
1

(m -  5)n

rU+i  rU+1  ^
-Suufejii+i) =  /  <j>u(t)<f)v(i)dt = / 2sin[(u —-)7rt]sin[(i; —-)7rt]d£

J u  J u  *  J
rU+i

= / cos[(tz — v)7rt] — cos [(it +  v — l)nt]dt
J u

(If u ^ v )  =  ------- — [s'm[(u — v)7rti+i\ — s'm[(u — v)7rti\]

~ (u + v — l ) n [s[n[{u +  V ~  1 7̂r̂ +1l sin[(w +  v ~  tyU]]
f U +1

(If u = v) = / 1 — cos[(2ii — l)irt]dt
J u

— ti+i - U -  — -r-[sin[(2u -  1)7vti+i] -  sin[(2it -  l)7rtj]
[ZU — 1)7T

Figure 4.5 shows that assuming the optimal sampling points, the generalised MSE 

of the truncated Karhunen-Loeve expansion (p = 55) under the Markovian assump

tion and the analytical generalised MSE are quite close to each other. If we further 

check the value for this difference, it is around 10-5 — 10-6 (see, table 4.1). Also 

notice that under the Markovian assumption, we can choose any n as long as n > 2 

instead of p > n, which provides flexibility and eases the computation.

Both figure 4.5 and table 4.1 imply that it is reasonable to use the truncated 

Karhunen-Loeve expansion for the prediction in the Brownian motion.

The reduced m odel is the Gaussian regression m odel
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Figure 4.5: Under the optimal scheme, i.e. U = the generalised MSE using the 
Karhunen-Loeve expansion and the Markovian assumption vs the analytical solution 
in the Brownian motion, p = 55 and 5 < n < 100.

We now consider the case, when the reduced model is the Gaussian regression 

model expressed in equation 4.3.3, which contains the added noise in addition to the 

truncated Karhunen-Loeve expansion, while the full model is the original process.

In order to apply the Gaussian regression model, the hyperparameter cr2 needs 

to be estimated first. As is mentioned previously there are two approaches, the 

eigenvalue approach and the maximum likelihood approach, to estimate the hyper- 

paramters depending on whether the covariance function is known or not. Both
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n 5 25 45 65 85 100
Markovian
Analytical

0.0312594
0.0312500

0.0066426
0.0065789

0.0036987
0.0036765

0.0025588
0.0025510

0.0019574
0.0019531

0.0016646
0.0016611

Table 4.1: Comparison between the solution using the Markovian assumption and 
the analytical solution to the generalised MSE in the Brownian motion when p = 55.

approaches will be used to estimate a2 first since the covariance function for the 

Brownian motion is known to be min(s, t). In the maximum likelihood approach, the 

data is simulated at the sampling points.

It can be seen from figure 4.6 that cr2 derived from both the eigenvalue approach 

and the maximum likelihood approach follows the same pattern. When p increases, 

a 2 roughly decreases. However, a 2 from the likelihood approach appears to be more 

volatile, which reflects the unpredictable characteristic of the stochastic process in re

ality. In the following analysis, for simplicity, the result from the eigenvalue approach 

is used, i.e. cr2 derived from equation 4.3.4.

Figure 4.7 shows the performance of the generalised MSE under the Gaussian

regression model with different p and n. As is expected, it does not perform very well
V'S x  ■under small p. For n =  50, and p =  5, /  =  0.9596, i.e. there are still about 4%2-a= 1

of the cumulative expected variance that can not be explained. The difference of the 

generalised MSE between the Gaussian regression model and tha t of the analytical 

solution is almost 10~2. The reason appears to be that the balance is not well kept be

tween the diagonal and the off-diagonal elements of the truncated covariance matrix. 

With lower p, the approximation of the covariance function at the diagonal elements 

relies more on bigger a 2 to capture the true covariance function, while the approxi

mation of the covariance function for the off-diagonal elements remains using merely
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Figure 4.6: The estimator of cr2 using both approaches, when order increases from 
5 to 100. Red line: the eigenvalue approach; Blue line: the maximum likelihood 
approach.

the truncated Karhunen-Loeve expansion. The bigger the p, the less the diagonal 

elements rely on cr2, and thereafter the more improvement there is in the generalised 

MSE. Furthermore, when p >  n, the result under the Gaussian regression model (with 

cr2) can be compared with the result under the truncated Karhunen-Loeve expansion 

(without cr2). It is shown in the plot that the result with a2 actually performs better, 

although the difference between them are only 10-6 — 10-5. When n is increased to 

200, and the p is used at a relatively big value, which lies in between 150 to 250,
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Figure 4.7: The generalised MSE using the Gaussian regression model, the truncated 
Karhunen-Loeve expansion and the analytical generalised MSE. Blue: The generalised 
MSE using the Gaussian regression model; Green: The generalised MSE using the 
truncated Karhunen-Loeve expansion; Red: The analytical generalised MSE. Left: 
n = 50 and 5 <  p < 100; Right: n = 200 and 150 <  p < 250.

the difference between the generalised MSE of the Gaussian regression model and
ŷ l50

that of the analytical solution reduces to only 10 . In fact, ~  0.999. This

means that the majority of the cumulative expected variance has been explained by 

this higher order p. The result derived by the Gaussian regression model continues to 

outperform the result derived by merely the truncated Karhunen-Loeve expansion. 

Their difference remains around 10-6 — 10~5.
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4.4 Num erical m ethods for prediction and gener

alised MSE

For most processes as mentioned, where analytical solutions to the Karhunen-Loeve 

expansion are not applicable, numerical solutions play an important role. The numer

ical method under here is the Haar wavelet expansion method described in chapter 

2, which has shown to be both computationally fast and accurate and treats the 

eigenfunction as a function, when the covariance function is known.

Use the same notation as chapter 2, when the reduced model is the truncated 

Karhunen-Loeve expansion and p > n

$(t)  = DV(t)

<£> =

K  = <S>TA<S> = 'HTDTAD<f>

k = <5t A <S(t) =  y TDTADV(t)

Hence the prediction and its corresponding generalised MSE can be expressed as 

follows

y(t) = ■(H(t)TDTA D ' i ! ^ TDTA D ^ ) - 1ys
p OO

/ M S E  [y(t)]dt = V ' Aj — trace[A<5(2-R'_1 — K~1KfK~1)QTA]
Jrr  i =l

OO
=  y  Aj -  trace{AL>^'[2(^|TZ3TA£)^')_1

i—1

- { q TDTAD'i!)-lK s {yTD TA D y ) - 1} y TD TA}

When the reduced model is the Gaussian regression model with cr2 added as the 

variance of the independent noise for the prediction, the only change is that K  =
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D TA D ^  +  cr2. When the covariance function is known, and the time interval is 

on [0,1], cr2 can be estimated as

cr2 =  f  Vai(y(t))dt — trace(A) (4-4.1)
Jo

We still consider the Brownian motion first. Since the analytical solution of its 

generalised MSE is known under the optimal sampling points, a comparison can be 

made between the analytical solution and the solution from the numerical scheme.

In figure 4.8, 50 optimal design points at ti = 3x^ +1, 1 < i < 50, together with 

50 testing points at U = 3x3~2: are simulated. They are displayed on the top left 

plot. For the prediction performance shown on the top right plot and the bottem 

left plot, both the truncated Karhunen-Loeve expansion and the Gaussian regression 

model perform quite well, since most of the predictions are within the 95% confidence 

interval. The way of constructing the confidence interval is quite like that used in the 

regression analysis. Denote y(t) = aTys, where aT = kTK ~ l , then

Var(y(t) -  y(t)) = Var(y(t) -  aTys)

= Var(y(t)) +  aTV&i(ys)a -  2aTcov(y(£), ys)

= K + kTK - l K f K - lk - 2 k TK - l kf

Since E[y(t) — y(t)] = 0, then

; V{t) ~  m  ~  JV(0,1) (4.4.2)
y/Vax(y(t) -  y(t))

Therefore, the 95% confidence interval for y(t) is calculated as

[y(t) -  1.96^/Var(y(t) -  y(t)), y(t) +  lMy/Vax(y( t )  -  y(t))] (4.4.3)

For the generalised MSE with the change of p shown on the bottom right plot, the 

results derived from the numerical schemes using the Haar wavelet method are slightly
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Figure 4.8: The numerical scheme for calculating the generalised MSE using the 
Haar wavelet when M  = 256 for the Brownian motion. Top left: the simulation path 
of the Brownian motion (red), 50 sampling points (blue), together with 50 testing 
points (green); Top right: the prediction of the testing points using the truncated 
Karhunen-Loeve expansion (p = 100), with the corresponding 95% confidence inter
val; Bottom left: the prediction of the testing points using the Gaussian regression 
model (p = 100), with the corresponding 95% confidence interval; Bottom right: the 
generalised MSE comparison between the analytical Karhunen-Loeve expansion and 
the numerical scheme.
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different from the one derived analytically using the Karhunen-Loeve expansion. The 

difference is about 10—3, which is also the difference between the approximation of 

the eigenfunction using the Haar wavelet (M  =  256) and the analytical solution (see, 

section 2.3, chapter 2). This value of 10-3 could also be the reason why the generalised 

MSE derived from the Haar wavelet is below the analytical solution 2(3x50+1) when 

p approaches around 60. Moreover, the generalised MSE derived from the Gaussian 

regression model has generally even smaller error. This matches our previous analysis.

The reason that the Brownian motion is used as the first example is because its 

analytical solution can be used to compare with the numerical result. Next, another 

example will be shown, whose analytical solution is untractable. It is the stochastic 

process with the kernel function (1 +  \t — s|)exp[—\s — t|]. This time the sampling 

points are chosen to be U =  1 <  ̂ while the testing points are U =

1 < i < n, when n equals to 50. The eigenvalues for this covariance function share 

the same character as that for the squared exponential kernel in the sense that the 

first two eigenvalues counts for 99% of the sum of all the eigenvalues. The first five 

eigenvalues (from highest to lowest) are 0.9435229, 0.0508775, 0.0043546, 0.0008119 

and 0.0002382 respectively.

Figure 4.9 provides the same information for the kernel (1 +  |t — s|)exp[—|s —1\\ 

as that for the Brownian motion in figure 4.8. The variance for this prediction is 

relatively small, only about 10~4. That is why the confidence interval is so narrow. 

In terms of the prediction shown on the top right plot and the bottom left plot, both 

the truncated Karhunen-Loeve expansion (without noise) and the Gaussian regression 

model (with noise) perform quite well again with most of the predictions lying within 

the 95% confidence interval. The generalised MSE displayed on the bottom right
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Figure 4.9: The numerical scheme for calculating the generalised MSE using the 
Haar wavelet when M  =  256 for the process with the kernel (1 +  11 — s|)exp[—\s — 
11]. Top left: the simulation path of the process (red), 50 sampling points (blue), 
together with 50 testing points (green); Top right: the prediction of the testing points 
using the truncated Karhunen-Loeve expansion (p =  100), with the corresponding 
95% confidence interval; Bottom left: the prediction of the testing points using the 
Gaussian regression model (p = 100), with the corresponding 95% confidence interval; 
Bottom right: the generalised MSE comparison between the numerical scheme with 
cr2 and that without cr2.
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order 50 70 130 150
with cr2 4.8613191 x 10~6 8.9756746 x 10"7 8.9761501 x 10-7 8.9640381 x 10“7

without a 2 1.7192874 x 10“4 8.9676508 x 10“7 9.022133 x 10"7 8.9157505 x 10"7

Table 4.2: The difference of the generalised MSE using the truncated Karhunen- 
Loeve expansion (without cr2) and using the Gaussian regression model (with cr2), 
when n =  50 for the kernel (1 +  \t — s|)exp[—|s — t\].

plot is very small using both of these two models. Table 4.2 lists the value of the 

generalised MSE for the order 50, 70, 130 and 150, when n = 50.

Except for the result at order 50, which has relatively bigger difference (10-4), the 

majority of the orders bigger than 50 result in the difference as small as 10~7. This is a 

quite different result compared with that of the Brownian motion. One of the reasons 

is that we do not need such high orders in the model, since the first two eigenvalues 

already explain more than 99% of the cumulative expected variance. However for the 

truncated Karhunen-Loeve expansion (without noise), the calculation has to meet the 

assumption p > n, which means that p could be too big in this case if n is already 

50. Hence the Gaussian regression model would be preferred as the reduced model in 

this problem to break the above assumption.

From figure 4.10, it shows that the generalised MSE dramatically decreases in the 

first few orders. When the order is 10, the generalised MSE is already quite close to 

0 and remains stable for the later orders. This matches our expectation, since it is 

the first few terms in the truncated Karhunen-Loeve expansion which play a major 

role in this expansion.
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Figure 4.10: The numerical generalised MSE under the Gaussian regression model 
for the kernel (1 +  \t — s|)exp[—\s — £|], when n =  50.
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4.5 Conditional Karhunen-Loeve expansion

We assign value a to the sampling points ys =  {y(U), 1 < i < n}, where

aT = (ai,  02, On); a i e R , l < i < n  (4.5.1)

Then the conditional expression y(t)\{ys = a} is a new stochastic process, which can 

be approximated using a Karhunen-Loeve expansion. In this section, this expansion 

under the conditional setting is called the conditional Karhunen-Loeve expansion.

In this section, the conditional Karhunen-Loeve expansion is derived for two types 

of processes, which are the Markovian process and the non-Markovian process. It is 

shown that the solution to the Markovian process can be calculated at each interval, 

whose boundary points are the sampling points, while the analytical solution to the 

non-Markovian process is in general more difficult to obtain than the solution to the 

Markovian process.

Using equation 1.2.24, chapter 1, we can now expand y(t)\{ys — a}

y(t)\{y3 = a} =  E{y(t)\{ys = a}) +  y / \ i& W fi (4.5.2)
i>l

where A; and solves the Fredholm integral equation

J  cov(y(t),y(s)\ya = a)<f>i(s)ds = \i<t>i(t) (4.5.3)

and & is the independent random variable with mean 0 and variance 1. If each 

y(U) is a Gaussian process, y(t)\{ys = a} is also a Gaussian process, and thereafter 

(i ~  i.i.d.N{0,1).

Using equation 4.1.3, the conditional expectation can be modelled as

E(y(t)\{Vs = a}) = kTK - 1a , (4.5.4)
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where

(Kn)ij = cov{y(ti),y(tj)), 1 < i , j  < n

kT = (cov(?/(t),2/(ii)), cov(y(t),y{t2)), • •• ,  cov(y{t) ,y(tn))̂ )

Section 4.2, chapter 4 provides a detailed explanation on the approximation of the 

conditional expectation using the truncated Karhunen-Loeve expansion and its corre

sponding generalised mean squared error. In this section, we try to capture the whole 

stochastic part of y(t)\{ya = a} using a biorthogonal system as defined in equation

4.5.2. For simplicity, it is further assumed that for each sampling point, y(ti) — 0,

1 < i < n, i.e. a =  0. Then E(y{t)\{ys = 0}) =  0 and

y{ t) \{ys = o} =  (4.5.5)
i>l

In terms of the conditional covariance, the partition inverse equation can be applied 

twice. For time s and time t, the conditional covariance is

cov(y(s),y(t)\y3 = a) = cov(y(s), y(t)) -  k ^ K ~ lkt (4.5.6)

When there is only one prior observation, i.e. n = 1

t r  \ n \ \ u \   ̂ cov(y(s),y(ti))cov(y(t),y(ti))
cov(2/(s),y(i)|j/(ii) =  ax) =  cov (y ( t ) ,y (s ) ) ----------------y arfafti))--------------- ^ *

Equation 4.5.7 can be applied to derive the covariance function of the Brownian

bridge, since the Brownian bridge is constructed using the Brownian motion W(t)

conditional on 1) =  0. Then the conditional covariance function for the Brownian 

bridge is

cov(H '(s),H '(f)|H '(l) =  0) -  O T W ,) ,y ( . | ) - ^ W . ^ j y )■»-<■))

- min(£, s) — st
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which is exactly the covariance function we expect.

After obtaining the conditional covariance function, the corresponding Fredholm 

integral equation can now be solved.

J  cov(y(s ),y(t)\y.s =  a)(j>(s)ds = X<f>(t) (4.5.8)

Applying equation 4.5.6, we obtain

J  cov(y(s),y(t))(f>(s)ds -  J  ( k j K ~ 1kt)(f>(s)ds = \<j>(t) (4.5.9)

If denoting K ~ l = {a^}, equation 4.5.9 can be written down as

/  cov(y(s),y(t))4>(s)ds- /  V  Y ]  ai:jcov(y(s), y(U))cov(y(t), y(tj))<f>(s)ds =  \cp(t)
J t  J t  . •

(4.5.10)

Notice further that if one of the points (t or s) is one of the sampling points, i.e. 

t =  U or s = U, 1 <  i < n, the conditional covariance equals to zero. This could be 

seen from equation 4.5.6 directly. Therefore, when solving the integral equation

J  cov{y(U),y(s)\ys = a)cf)(s)ds = \(t)(U) (4.5.11)

with cov(y(ti),y(s)\ys = a) = 0, a boundary condition for the eigenfunction can be 

obtained, which is (f){tj) = 0, 1 < i < n.

The rest of this section presents some examples on deriving the conditional Karhunen- 

Loeve expansion.

E xam ple  1: The Brownian motion on [0,1] with two prior observations y( 1) =  0 

and y ( |)  =  0.

We need to solve the following Fredholm integral equation.

{min(£, s) -  j-^-j-[min(*, ^)min(s, i )  +  i s *  -  im in (t ,  i ) s  -  im in (s ,  i )t]}<f>(s)ds =  \</>{t)
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Differentiating it twice results in

-0 W  =  (4.5.12)

It is the same differential equation as that of the Brownian motion. Since the bound

ary condition at |  divides the whole interval into two parts, the eigenfunction can 

then be solved in these two intervals separately. Denote

/ x f /M  0 < t < \
*(*) =  < , (4-5.13)

I 9{t) 3 < t  < 1

On one hand, for 0 < t < I, the boundary conditions are /(0 ) =  /(§ )  =  0. /(0 ) =  0 

provides the functional form for the eigenfunction

f(t) = 4sin(-^=) (4.5.14)

Since f ( \ )  =  0,

(4-5.15)

Using the orthogonality condition, A = \/6. Then fi(t) =  \/6sin(37ri£)

On the other hand, for |  < t < 1, the functional form of the solution to equation 

4.5.12 is

g(t) = Asin(-j=) +  £cos(-^=) (4.5.16)

The boundary conditions g ( |)  =  g(l) = 0 suggest that

1 1  1 1
i4sin(— -=) +  Bcos(— -=) = 0 and ylsin(——) +  £?cos( —■=) — 0 (4.5.17)

3vA 3vA vA vA

Further simplification of equation 4.5.17 results in

sin( ^ )  =  ° (4.5.18)
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which implies that A j = gp n2

Therefore the functional form of g(t) is g(t) = +  B c o s ( ^ Lt). Applying the

boundary condition 0 ( |)  =  0 again, (Or alternatively we can also use 0(1) =  0. Both 

of these conditions result in the same solution.)

Using the orthogonality condition, A = B = \/3.

The eigenvalues for this problem are a combination of both 9̂ 2, z > 1 for 1 < 

* < I and j  > 1 for |  < t < 1. Since the eigenvalue is calculated interval by

interval, it implies tha t the eigenfunction can also be expressed interval by interval, 

i.e. the zth eigenfunction is <&(£) =  /»(£)/(0<t<i) +  gi(t)I{i <t<1). When A» =  9̂ ,

—  / i ( 0 - ^ ( 0 < £ < i ) S  W ^ e n  A i  =  Q j 2 n 2 5 0i(O —  1)-

Hence the conditional Karhunen-Loeve expansion for this process can be expressed 

as

^ s i n ( y ) +  B c o s (y ) =  0 (4.5.19)

Therefore, the solution to the eigenfunction is

j  odd —> A = 0 —► 4>j{t) = Bcosf ^

3/(*)l{j/(^) =  O.y(l) =  0} =  ^ U v/6sin(37rit)/ (0<i<§)^
i> 1

where ~  i.i.dN(0,1)
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1st 2nd 3rd 4th 5th 6th
Analytical 

Analytical value 
Numerical (Haar)

4
97r2

0.045032
0.045033

l
97T2

0.011258
0.011259

4
367T2

0.011258
0.011259

4
81tt2

0.005004
0.005005

4
144tt2

0.002814
0.002816

i
367T2

0.002814
0.002816

Table 4.3: The analytical and the numerical solution to the first six eigenvalues of 
the conditional Brownian motion o n t/( |)  = y( 1) =  0.

Now the performance of the numerical solution using the Haar wavelet method is 

briefly compared with the analytical solution. For the accuracy of the Haar wavelet, 

256 basis functions are chosen, (see table 4.3 and figure 4.11)

Whatever the eigenvalue or the eigenfunction, solutions from both the Haar wavelet 

numerical scheme and the analytical solution are very close to each other. It can reas

sure us again that the eigenvalues for the conditional Brownian motion are a combi

nation of the eigenvalues from different intervals, while the eigenfunctions only have 

non-zero values in the interval from which the corresponding eigenvalues calculate.

Remark 4.5.1. Now take a further look at the conditional covariance function for the 

Brownian motion in this problem,

cov(y(s),y(t)\y(^) = 0,2/(1) =  0) =  0 min(s, t) < i  < m ax(s,t) (4.5.20)

Hence the Fredholm integral equation we need to solve can be separated into two 

parts.

J  cw{y{s),y{t)\y(^) =  0 ,2/(1) =  0)f{s)ds  =  Af ( t )  / ( 0) =  / ( i )  -  0

J  cov(y(s),y{t)\y(^) = 0,2/(1) =  0)g(s)ds = \ 'g(t)  p ( i )  =  g( 1) =  0

Differentiating either part results in the same differential equation as that in the 

Brownian motion case, except for different boundary conditions. The above argument
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first eigenfunction (Analytical)
2.5

2

1.5

1

0.5

0
0 0.5 1

first eigenfunction (Haar)
2.5

2

1.5

1

0.5

0
0 0.5 1

second eigenfunction (Analytical)
2.5

0.5

0 0.5 1

second eigenfunction (Haar)
2.5

0.5

0.5 10

Figure 4.11: Comparison of the first two eigenfunctions between the analytical so
lution and the solution derived from the Haar wavelet (M=256) of the conditional 
Brownian motion on =  y( 1) =  0.

provides an alternative way to understand why the final solution to the eigenvalues is 

a combination of the eigenvalues of two different intervals and why the eigenfunctions 

only have non-zero values in one of the intervals.

Remark 4.5.2. Remark 4.5.1 also shows a fact that the conditional covariance function 

for the Brownian motion has a non-zero value if there is no sampling point in between 

s and t.

This is actually true for any Markovian process. We only show the case if neither 

of the closest sampling points of t and s is the boundary point. It can be easily
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generalised to the situation involving the boundary points.

Assume y{t) is a Markovian process. It has n sampling points t*, 1 < i < n  with 

ti < £2 < • • • < tn. It needs to be shown that for j  +  1 < i and tj < s < tj+i < U < 

t < t i+u cov(y(s),y(t)\y3 = a) = cov(y(s),y(t)\y(ti) = au --- ,y (tn) = an) = 0. This 

is true for the Markovian process because

P{y(t),y(s)\y3) = p(y(t)\y(s),y3)p(y(s)\ys)

= P{y{t)\y(ti) ,y (t i+1))p(y(s)\y(tj ) ,y(t j+1))

=  p ( y ( t ) \ y s ) p ( y ( s ) \ y s )

Hence c o v ( y ( s ) , y ( t ) \ y 3 = a) = 0 if there is sampling point(s) in between y( t )  and

y ( s )-

E xam ple  2: The Brownian motion on [0,1] when y(ti) = 0, 1 <  i < n is observed, 

where 0 =  to < ti < t2 < • • • < tn = 1

Example 2 is a generalisation of example 1.

Since cov(y(ti),y(tj))  =  m i n a f t e r  denoting â - =  m in(ti,tj), the Fredholm 

integral equation can be written down as

/ min(s, t)cf)(s)ds — a^min(£, t j )  / min(s, t i )(p(s)ds = \(f)(t) (4.5.21)
Jo i j  Jo

It is equivalent to

/ min(s , t) f(s)ds  - E E  dijt / mm(s,ti)<f>(s)ds
J °  i  t < t j

- E E  dijtj / min(s, ti)<f>(s)ds = \<f)(t)
i  t > t j  J 0 

Differentiating it once, we obtain

[  4>(s)ds — E E * ,  [  min(s, ti)<f>(s)ds =  (4.5.22)
Jt i t<u J° dt
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Differentiating it a second time, we obtain

- m  =  (4-5.23)

Since the Brownian motion is a Markovian process, we can solve the above differential 

equation at each individual interval [U,ti+1], 0 <  i < n — 1. Assume at the interval 

[ti,ti+1], 0 < i < n — 1, we have the eigenvalue A^+1  ̂ and the corresponding eigen

function Then the differential equation, together with its boundary conditions,

are

=  A(i+1)^ (i+1)w  <t>i i + 1 ) ( t i )  =  # +1)(«i+i) =  0,0 < i  <  n -  1 (4.5.24)

Equation 4.5.24 results in the functional form of 4>(l+1\ t ) ,

<t>{ i +1\ t i + 1) =  ^ s i n f - ^ L g )  +  B<i+I> c o s ( ^ = )  (4.5.25)

For the first interval 0 < t < t\, using the boundary condition </>d)(0) =  cj)^(ti) = 

0, the functional form of the eigenfunction is (p^\t) = A ^ s i n ( ^ t )  with the eigenvalue 

Aĵ +1  ̂ =  -^2 • Combining with the orthogonality condition, f*1 [4>^\s)]2ds = 1, it can 

be obtained that

(4.5.26)

For the rest intervals U < t < ti+1, l < z < n —1, we have the boundary conditions 

0h+1)(^.) — 0h+1)(ii+1) =  0. It means that

A (i+1)s i n ( ^ = )  +  B <i+1> c o s ( ^ = )  =  0
W + i )  VA^+i)

A(i+1)s i n ( - ^ = )  +  B*‘+1*cos(—f = = )  =  0 
W ^ + i)  V A tSi)

Simplifying the above equations, we obtain,

i+1
A(’+1) =  0 (4.5.27)
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Hence the eigenvalue A^+1) is

4 i+1) =  {ti+1k V ti)2 (4-5-28)

A^l+l  ̂ and Hb+i) can be decided by looking at the boundary condition <̂ t+1)(tt) — 

(j)̂ l+l\ t i+1) =  0 again, as well as the orthogonality condition f*l+1 [(p̂ +1\s ) ] 2ds = 1.

Hence, after solving for ylh+d anc[ B ^ +l\  the conditional Karhunen-Loeve expan

sion can be expressed as

2/WI{2/(*») =  0,0 < h  < t2 < • • ■ < tn =  1} =  ^ ^ J ' ^ s m ( ^ t ) I ( 0<t<tl)£ltk
k> 1 ^  " 1 1

+  E E  *'[^(i+1)sin( * k_  t) +  g (<+1)cos(— —r -t) ]I( t i<t<tw)i (whk
1=1 fc>l t+1 1 1+1 1

where ^  ~  i . i .d.N(0,1), 1 < i — 1 < n, k > 1.

The conditional Karhunen-Loeve expansion changes frequency in the eigenfunc

tion, while the functional form of the expansion remains as a linear combination of 

the trigonometric functions.

For the Ornstein-Uhlenbeck process, a general solution given n sampling points 

will also be provided. Notice that the Ornstein-Uhlenbeck process is again a Marko

vian process, hence the integral equation can be solved interval by interval.

E xam ple  3 The Ornstein-Ullenbeck process on [0,1] when y(U) =  0, 1 < i < n 

is observed, where 0 =  to < U < t2 < • ■ • < tn < tn+1 =  1.

For the Onstein-Uhlenbeck process, the covariance function is exp(—(3\t — s|) up 

to a scalar multiplier. Given n prior observations, the conditional covariance function 

can then be expressed as

exp(-P\ t  -  s\) -  EE akhexp(-P\t  -  th|)exp(-/? |s -  tk\) (4.5.29)
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where akh =  exp(-(3\tk -  U|)-

Since the Ornstein-Uhlenbeck process is a Markovian process, it is assumed that 

for each interval [UAi+i], 0 <  i < n, we have the eigenvalue A^+1\  together with the 

eigenfunction (f)̂ +1\ t ) .  Then the integral equation at each interval [U, t i+1], 0 < i < n, 

is

Again this is the same differential equation as that of the unconditional case. Hence 

the functional form of the eigenfunction at interval [U,ti+1] is

cj)(i+1\ t )  = A ii+1)cos(w{i+1)t) +  B (i+l)sin(w{i+1)t) (f){i+1)(ti+1) =  4>{i+1)(U) = 0

For any interval whose both bounds are the sampling points, i.e. [U,ti+1], 1 < i <

f  exp(—(5\t — s|)0^+1^(s)d,
Ju

EE akhe x p ( - P \ t - t h\) I
k h

=  A 0<i+1)(t)

Differentiating the integral equation twice, we obtain

-2/3<t>(i+i\ t ) + /?2A0<i+i)( t ) = ^ r : (t)at1
(4.5.30)

Simplifying equation 4.5.30, we obtain

2(5 -  (52\ ^  
AO+D

(4.5.31)

(4.5.32)

n — 1, the boundary conditions are ) =  (j)̂ +l\ t i+1) =  0. It implies that

A^+1)cos(u/l+1^j) +  B^t+1̂ sm(w^t+1hi) =  0 

A^+1^cos(ic^+1̂ i+i) +  B̂ l+1 ŝm(w t̂+1Hi+i) =  0



176

Solving the above equations is equivalent to solving

sin(u/I+1)(^+i — t{)) = 0 (4.5.33)

Therefore the solution to +1̂  is

w%+1)(ti+1 -  U) = k'K w%+1) = - (4.5.34)
' ' i + l  R

Hence the solution to the eigenvalue Ajj.z+1̂  is

> (i+i) _  2(5 _  2(3(U+i — U)2 . .
+ P  k v  + p ( t i+1- u y  }

For the boundary points, the equations for deriving the eigenvalues are slightly dif

ferent. In the interval [0,ti], the boundary conditions are as follows

j / 1](0) ~  (3<p{l){0) =  0

0 (1)(*i) =  O

Replacing the eigenfunction with its functional form, we have

A ^ p  -  B m w(1) = 0 

A ^ c o s ( w ^ t i )  + = 0

Solving the above equations is equivalent to solving

co t(u /^ ti) =  — ~iT\ (4.5.36)

For [tn, 1], the boundary conditions are

4 0 (n+i)( i ) + w <n+i)( i ) = oat
^ n+1\ t n) = 0
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Replacing the eigenfunction with its functional form again, we have

^(n+i)^ _  u,<n+1>tan(u;<’*+1>)) +  B (n+1)(/?tan(w/n+1)) +  ?u(n+1)) =  0 

/4(n+1)cos(u/(n+1)in) +  B (’,+1)sin(u)<"+1>tn) =  0

Then the above boundary conditions can be simplified as

I (n+n \ /3 — u /n+1Hanu/n+1)
cot(ur h n) = —-------------------rTTT (4.5.37)

(3tanu)(n+1) +  w (n+l)

Combining the above results, the eigenvalues for the conditional Onstein-Uhlenbeck 

process can be obtained, yfb+i) an^ 5 O+1) can be further solved using the orthogo

nality condition of the eigenfunction.

The above three examples calculate the conditional Karhunen-Loeve expansion 

for the Brownian motion and the Ornstein-Uhlenbeck process. However, both these 

two processes are Markovian. In practice, when the process is not Markovian, the 

analytical solution is usually very difficult to obtain, or at least not as simple as the 

solution for the Markovian process. Now the process with the kernel function 1 — \t — s\ 

based on one prior observation at time S  will be used to demonstrate the calculation 

procedure of deriving the conditional Karhunen-Loeve expansion in general.

E xam ple 4: P ro cess  w ith  th e  kernel 1 — \t — s| on  [0,1], cond itional on 

one ob serv a tio n  a t tim e  S

After observing at time S , we can express the conditional covariance function.

1 -  \t -  s\ -  (1 -  \t -  S |) (l - \ s -  51) (4.5.38)

It is further assumed that the eigenfunction <p(t) is

, . f f( t )  0 < t < T  
m  = \  , : „  (4.5.39)

1 g(t) T  < t < 1
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Hence the following integral equations need to be solved

/ J [1 — t +  s — (1 — S + 1)( 1 -  S  +  s)]f(s)ds

~h f t [1 — s + 1 — (1 — S  ~h <0(1 — S  +  s)]f(s)ds

+  J^[l — s +  t — (1 — 5  +  t)( 1 — s +  5)]p(s)ds =  A /(t) 0 < t < S

J0T[ 1 — t + s — (l — t + S)( l  — S  + s)]/(s')ds

+  J^.[l — £ +  s — (1 — i f c - f -  5)(1 — s +  S)]g(s)ds

+  / / [ l  — s +  £ — (1 — t + iS')(l — s +  S)]g(s)ds =  Ag(£) 5  < t < 1

Differentiating the equation twice with respect to £, the following differential equation

is obtained

2 f ( t )  +  A f "  {t) = 0 2 g(t) +  A#"(£) =  0
/ // 2 

or f ”(t) +  w2f( t )  = 0 g '(t) +  w2g(t) = 0 where w2 = —
A

Therefore, the solutions to f ( t ) and g(t) can be expressed as

f( t )  = cisin(ict) +  c2cos(ic£) g(t) = c3sin(ic£) +  C4Cos(ict) (4.5.40)

The boundary conditions of the process can be found as follows

f ( S )  = g(S) = 0 / ( 0 )  =  —3 (1) =  /(0 ) + g ( l )  (4.5.41)

With the functional form of the eigenfunction, the boundary conditions can be sim

plified as

c2 =  — tan(u>5)ci C\ =  —c3cos(ic) +  C4sin(rc)

C4 =  —tan(rc5')c3 c\w = c2 +  c3sin(u;) +  c±g,os(w )

After combining these boundary conditions, we can solve for the eigenvalues out of 

the following equation

2
tan(ic — wS)  +  tan(iuS') +  w =  0 A =  —  (4.5.42)

w2
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As an example, we assume that an observation is observed at one time point 

S  = The analytical solution can now be plotted in figure 4.12.

tan(w-w/3)+tan(w/3)

^  10

- 5

-10

-1 5

-20
20 20

w

Figure 4.12: The analytical solution to the eigenvalues for the process with the kernel 
function 1 — \t — s|. (Left) tan (w — f ) +  tan(^) vs —w; (Right) A =  ^ .

The left plot of figure 4.12 plots tan(w — ^w)-htan(^w)  and — w respectively. Each 

intersection in the plot represents one solution to w. After obtaining the solution to 

w from the left plot, the solution to the eigenvalue A can be obtained from the right 

plot, which shows the inverse quadratic relationship between A and w.

The eigenvalues from the analytical solution can now be further compared with 

the solution from the Haar wavelet method with 256 basis functions, i.e. M  = 256. 

Table 4.4 lists the first six eigenvalues. It can be seen that they are very close to each 

other. The difference does not appear until 10~3. The numerical solution confirms 

again the validity of the calculation procedure in deriving the analytical solution.

The above process with 1 sampling point can be generalised to n sampling points. 

The calculation procedure should still be the same, although it is usually difficult 

to derive the solution analytically. It should be noted that deriving the conditional



180

Analytical Numerical Haar (M =  256)
1st eigenvalue 0.2696687 0.2696716
2nd eigenvalue 0.0727949 0.0727979
3rd eigenvalue 0.0375350 0.0375377
4th eigenvalue 0.0141320 0.0141346
5th eigenvalue 0.0097205 0.0097232
6th eigenvalue 0.0072675 0.0072701

Table 4.4: Comparison of the analytical solution and the numerical solution to the 
first six eigenvalues of the process with the kernel function 1 — \t — s|.

Karhunen-Loeve expansion is closely related to deriving the univariate time, multi

variate state Karhunen-Loeve expansion using the “lining-up” method, which will be 

discussed in detail in the next chapter.



Chapter 5 

M ultivariate Karhunen-Loeve 
Expansion

In the previous chapters, we mainly deal with univariate stochastic processes. How

ever, in practice, researchers and practitioners are also interested in the multivariate 

setting, either multivariate in time or multivariate in state. Multivariate in state and 

univariate in time have an important practical impact on the fields like finance, while 

multivariate in time, and univariate in state has been discussed in both chapter 1 

and chapter 2 and is used for example in imaging and spatial methods. This chapter 

concentrates on the former multivariate setting. Section 1 starts from a univariate 

time, bivariate state Karhunen-Loeve expansion. Examples, like the Brownian mo

tion and the Ornstein-Uhlenbeck process will be provided. Section 2 extends from the 

univariate time, bivariate state to the univariate time, multivariate state and presents 

the main theorem of the multivariate Karhunen-Loeve expansion. Section 3 explains 

the numerical methods in the multivariate setting. Section 4 applies a theorem in 

section 3 and further relates it to the linear stochastic differential equation (SDE) in 

the narrow sense.
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5.1 Bivariate Karhunen-Loeve expansion

Assume that there are two correlated time series X  (t ) and Y  (t ). Although the analysis 

is harder than the analysis for one dimension, the problem of finding the Karhunen- 

Loeve expansion can be reduced to a one-dimensional problem under certain special

the problem to the univariate setting as the “lining-up” method. For convenience, 

we assume the special condition is satisfied and only consider the time interval T  

starting from 0 with length T. It can be easily generalised to any interval with any 

starting point.

Define a new series U{t) with X(t)  as its first part and Y(t)  its second part, i.e.

Hence the covariance function for {U(t), t  E [0,2T]} can be written down as

Depending on the location of t, there are two integral equations which need to be

condition (equation 5.2.21 and equation 5.2.22). We refer to this method of reducing

(5.1.1)

cov (X( t ) ,X (s ) )  0 < t , s < T

c o v p f  (s), Y ( t - T )) 0 < S < T < 1 < 2 T

co v ( Y ( t - T ) , Y ( s  - T ) )  T  < t, s < 2T
(5.1.2)

The Fredholm integral equation is f ^ T K(t,  s)(p(s)ds = \(j>(t) with eigenfunction </>(s) 

defined over two intervals [0, T] and [T, 2T] separately.

solved. When 0 <  t < T,
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Using the expression of K(t, s )  in equation 5.1.2, equation 5.1.3 can be reduced to

f  cov(X(t) ,  X(s) ) f (s )ds  + f  cov(X(t), Y(s))g(s)ds = A/(t) (5.1.4)
Jo Jo

When T  < t < 2T,

K(t,s)<j)(s)ds =  A (f>(t) (5.1.5)

Using the expression of K ( t , s) in equation 5.1.2 again, equation 5.1.5 can be simplified

as

f  cov (X ( s ) ,Y ( t  — T) )f (s )ds  + (  cov(y(s), Y ( t  — T))g(s)ds = \g ( t  — T)  (5.1.6) 
Jo Jo

Since T  < t < 2T, 0 < t  — T  < T .  Hence equation 5.1.6 is equivalent to

[  cov (X ( s ) ,Y { t ) ) f ( s )d s+  [  cov( Y (s), Y( t) )g (s)ds =  Xg(t) 
Jo Jo

for 0 < t < T. The orthogonal condition in the bivariate setting is

"2T
4>i {s )( f ) j { s)ds  =  Si

Equation 5.1.8 is equivalent to

*T
[  f i ( s) f j( s )ds+ [  9 i(s)gj(s)ds = Sij 

Jo Jo

(5.1.7)

(5.1.8)

(5.1.9)

After solving the integral equation 5.1.4 and 5.1.7, we can use Mercer’s theorem 

to decompose the covariance function. Assuming tha t the covariance function is 

continuous after lining up the process, we have

K(t ,s )  = Y M m u s )

=  <

cov(X(t ) ,X(s ))  =

cov(X(t),  Y ( s  -  T)) =  E i  Kgi{t)fi(s -  T)

C0V(X (s ) ,Y ( t  -  T)) = -  T)fi(s)
cov(Y(t -  T ) ,Y ( s  -  T)) = E i  k9 i ( t  -  T )9i(s -  T ) T  < t , s < 2 T

0 < t , s < T  

0 < t  < T  < s < 2 T  

0 < s  < T  < t  < 2T
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Or for time 0 < s , t  < T

co v (X ( t ) ,X ( s ) )  = Y^X i f i { t ) f i ( s) co v (X ( t ) ,Y ( s ) )  = Y^Xifi( t)gi(s)
i i

cov(X (s) ,Y(t))  = ^ 2 Xi9i(t ) fi(s) cov(Y(t) ,Y(s))  = Y^Xi9i(t)gi(s)
i i

In summary, for the bivariate state, univariate time process X(t)  and Y(t), t G 

[0,T], the bivariate Karhunen-Loeve expansion for them can be written down as

( x ( t f

i t  U ( * ) Jy ( t ) . .....................................6

where £* ~  i.i.d .N (0 ,1), A;, /; and gi are derived from the matrix form of the Fredholm 

integral equation

f T f cov(X( t ) ,X (s ) )  cov ( X ( t ) ,Y ( s ) ) \  ( f i (s) \  ^  = /

Jo \cov(X (s ) ,Y ( t ) )  cov(Y(t ) ,Y(s ))J  \g i(s)J  \9i(t)J

with the orthogonality condition

JqT (A M , g,(s)) da = 6„ (5.1.10)

Mercer’s theorem can now be expressed as

/ c o v ( m * « )  cov(J5C(t),y(s))\ =  ,  J

{cov(X (s),Y (t)) cov(Y (t),Y (s))J A  [  J

Notice that in the bivariate case, the eigenfunctions are a two dimensional column 

vector but the eigenvalues are still scalars.

Exam ple 1: The bivariate Brownian m otion

Assume that there are two correlated Brownian motion (X (t), t G [0,1]} and { Y (£), t G

[0,1]} with the covariance matrix defined as follows. For p > 0,

/cov(X (*),X (s)) cov(X(t), Y ( s ) j \  = /  min(t,s) pmin(t, s ) \  ^

Icov(X(s ) ,Y ( t ) )  cov(Y(t ) ,Y(s ))J lpm in(s,£) m in(t,s) J
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The bivariate Fredholm integration equation is

f 1 (  m in(t,s) p m in (t,s)\ / f ( s ) \  ( f ( t ) \  ,

L \pm in(s, t) min(t, s) J \g(s)  J I  g(t))

Decomposing min(t, s), equation 5.1.13 can be simplified as

f fo s f i s) +  psg(s)ds +  t f 1 f ( s )  +  pg{s)ds = X f ( t )  

I  fo Psf (s) +  sg(s)ds +  t f 1 pf(s)  +  g(s)ds = Xg{t)
(5.1.14)

with the boundary condition

/( 0 ) = s ( 0 )  =  0 (5.1.15)

Differentiate equation 5.1.14 once,

f ft f ( s ) + P9(s)ds = A /(0  

I  ft p f ( s) +  g(s)ds =  V M

Differentiating equation 5.1.14 one more time results in the following differential equa

tions.
f - m - P 9 (t) = \ f " { t )  ( 5 1 1 6 )

1 ~pf( t )  -  g(t) = Xg (t)

Solving these differential equations provides the functional form of f ( t )  and g(t)

(5.1.17)
f ( t )  = cicos(yj^-^t)  +  +  c3c o s ( ^ )  +  c4sin(y/^p/;)

gif) — —Cicosi\J~^jft) ~  C2s i n +  cocos(yjlf ft)  +  c4sin(^/

Considering the boundary conditions in equation 5.1.15, 

/(0 ) =  0 => c: +  c3 =  0 )
> = *  Cl -  c3 -  0 (5.1.18)

g(0) =  0 =>■ —Ci +  c3 =  0 J

Hence the solution to f( t )  and g(t) can be further simplified to

f{t) = c2s m ( y j ± f t )  + c4sin 

g(t) = —C2s i n ( t )  +
(5.1.19)
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Substitute the above solutions into the first differential equations to find eigenvalues

^  + ct(p + 
cos( \ / ^  ,

Solving equation 5.1.20 results in two possible solutions.

c2 =  0, cos(^J^£)  =  0 or 

C4 =  0, COS( A /  ~  0

(5.1.20)

(5.1.21)

Thus there are also two possible solutions to the eigenvalue A and the eigenfunction

( m

.9(0 ,
. Denote the j th  possible solution to the ith eigenvalue and the ithe eigen

function as Aj ti and f jA t) , where j  = 1,2 and i > 1, then equation 5.1.21 and
QjA 1) )

equation 5.1.19 are equivalent to

c2 =  0, Am =  = C4sin(2z = c4s in ^ -JM  or

c4 =  0, A2,t =  J 2 A 1) =  c2sin(2-l~1)7r̂ 2,z(̂ ) =  —c2sin (2z~1)7rf

Using the orthogonality condition

(5.1.22)

[  f i ( t )  + 9 i ( t ) d t  =  1 Jo

and the result that
f 1. (2 i — lW l
I ism- ^ 2d t= 2  ’

(5.1.23)

(5.1.24)

The value for the other coefficient can be obtained, i.e. when c2 =  0, C4 =  1 or when 

c2 =  1, c4 =  0.

ffence, the complete solution to the original integral equation is

=  pi-ipi*»A At) = s i n ^  2)nt»9iAt) =  s i n

A2,i =  (2 i -  1 W , / 2,zft) =  sin(2t~21)7rt,g2,t(t) =  —sin(2z~1)7rt

  ■ (2i—l)7ri

(5.1.25)
( 2 i - l ) 2n 2 ’ 2 Jtfz.U'V 2

In short, the bivariate Karhunen-Loeve expansion to the bivariate Brownian motion 

can be summarised in lemma 5.1.1.
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L em m a 5.1.1. The bivariate Karhunen-Loeve expansion to the bivariate Brownian

f x v > \motion with the covariance matrix

cov(X(t ) ,X(s )) cov(X (0,y(s))

cov(X(s), Y(t))  cov(Y(t),Y(s))

can be expressed as

^ ^  min(t, s ) pmin(t , s)^

t) min(t, s) j
(5.1.26)

s 2 i/ l  +  p 
(2i — 1)7Tz> 1 V '

(  .sm

\ s m -  2 y

(2z—l)7ri

(2-i— 1 )-7r£
+  y ,  V T = 7h  (2* - 1 )*■

/  .5zn(2i—l)7ri

—szn (2 z—l)zrZ
5

2 /
or

\y(tV
=  £

Z>1 ,/l+ £  - J L z£ \V  2 V 2 Vf7

2v/2 (2i -  1W
•szn  ------

(2z — 1)7T
(5.1.27)

where £* and £• are mutually independent standard normal random variables.

(  X ( t ) \
Also, can be written in terms of two independent univariate Brownian mo-

\ Y ( t ) )

tion B\(t) and ^ ( t )

(5.1.28)

E xam ple  2: T h e  b iv a ria te  O rn ste in -U h lenbeck  process

Assume that there are two correlated Ornstein-Uhlenbeck process {X ( t ) , t  € [0,1]} 

and {Y(t).,t  G [0,1]}, i.e. for (3 > 0

dX{t)  =  —(3X(t)dt +  rdWx(t) 

d Y  (t) =  -P Y ( t )d t  +  rdW2(t)
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(5.1.29)

with

/W on = ( 7 ¥
v w  \ f ¥  - \ F ? )  U w y

where B p t )  and B 2{t) are two independent Brownian motion.

Assume further tha t the initial conditions for X(t)  and Y ( t ) are: X(0) ~  N ( 0, ^ ) ,  

Y(t)  ~  N ( 0, Tjjj) and cov(X(0), y(0)) =  p^  (p > 0). The covariance matrix for X(t)  

and Y  (t ) is expressed as

co v (X (t),X (s)) cov(A (t),y(s)) 

co v (x (s), y c o ) cov(y(t), y (s))

f _  j exp(-/?|t -  s|) pexp(~P\t -  s\) \

2P \pexp(—/3|s -  t\) exp(- f i \ t  -  s|) /
(5.1.30)

Except for a constant term the Fredholm integral equation is

r 1 f  exp( 

Jo VnexDl

- P \ t - s \ )  p e x p { - P \ t - s \ )  

\pexp(~P\s -  *|) exp(-/?|t -  s|) ,

This is equivalent to solving

ds = X m

A t ) ,
(5.1.31)

f o  exp[~0(t -  s)]f(s) +  pexp[~P(t -  s)]g(s)ds 

+  / /  exp[~P(s -  t)]f(s) +  pexp[—(3(s -  t)]g(s)ds = Xf(t)  

f o  pexp[-fi( t  -  s)]/(s) +  exp[~P(t -  s)]g(s)ds 

+  f 1 pexp[—ft(s -  t)]f(s) +  exp[-/?(s -  t)]g(s)ds = Xg(t)

Differentiating the above equations once, we obtain

~P f* exp [~P(t -  s)]f(s) +  pexp[-(3(t -  s)]g{s)ds 

+P f 1 exp[~P(s -  t)]f{s) + pexp[-(3(s -  t)]g(s) = Xf '(t)

-(3 pexp[-0(t  -  s)]f(s) +  exp[-P(t  -  s)]g{s)ds

+(3 f l  pexp[-/?(s -  t)]f(s) +  exp[-(3(s -  t)]g(s)ds =  Xg (t)

Differentiating one more time results in

f (AP2 — 2p) f ( t )  — 2pPg{t) =  X f  (t ) = >  "@~yQ-f(t) +  ^f-g{t) +  /  (t) = 0

\  (AP2 — 2P)g(t) — 2pPf(t) = Xg (t) =>  2/3 AA/3 -g(t) +  +  g (t) = 0
(5.1.33)

(5.1.32)
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(5.1.36)

(5.1.3?)

Define

*  =  +  (5.1.34)

=  * > - * - % *  (5.1.35)
A

Then equation 5.1.33 is equivalent to

r ^ m + ^ g ( t ) + f ( t ) = o

1 +  </(f) =  0

Hence solutions to f ( t )  and g(t )  are

{/ (£ )  =  Ci sm(w2t)  +  c2cos (w2t) +  c3s m ( w i t )  +  C4, cos(wi t )  

g( t )  =  —Ci sm(w2t) — c2cos(w2t)  +  c3sin(u;i£) +  c4cos (wi t )

with the boundary conditions,

f / ' ( 0 ) - / 3 / ( 0 )  =  0, 9 (0) — 0g{O) =  0 

1  / ' ( l )  +  / ? / ( l )  =  0, g ' ( l ) + 0 g ( l )  =  O 

Substitute the functional form of f i t )  and g(t )  into the boundary conditions.

Ci(w2cos ( w2) +  fisin (w2)) +  c2(—iu2sin(itf2) +  Pcos (w2))

+ 03(1̂ 1 cos (u>i) +  fism(wi)) +  C4(—wis'm{wi) +  /?cos(u>i)) = 0 

—Ci(w2cos(w2) +  /?sin(iu2)) -  c2( - w 2sm(w2) +  /?cos(te2)) ^

+ c3(iuicos(ioi) +  /^sinfuq)) +  C4(—iuisin(ii;i) +  Pcos(wi)) = 0 

—ciiy2 +  c2P +  c3wi -  c4/? =  0 

ciie2 -  c2P +  c3Wi -  c4P = 0 

In order to have non-zero solutions, the determinant of the following matrix should 

be equal to zero.

w 2cos{w2) +  Psin{w 2) —w 2s in{w2) -f  Pcos(w2) WiCOs(wi) +  ps'm(wi)  — w is in (w i )  +  /?cos(uq)

- w 2cos(w2) — P s m ( w 2) w 2s m { w 2) — Pcos (w 2) WiCOs{wi) +  Ps'm(wi)  — u q s in ^ i)  +  /?cos(ioi)

- w 2 P Wi —P

w 2 —P Wi —P

=  0
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Calculating the above determinant results in the following equation

4(2/3u;2cos('i{;2) +  /?2sin(u;2) — wlsm(w2 ))(P2sm(wi) +  2/?ruiCos(u;i) — iujsin(iui)) =  0

(5.1.39)

This means that

P2sm(wi) +  2/?iyiCOs(iyi) — lyjsin(iyi) =  0 or,

2 /? u ;2 c o s ( i c 2 ) +  (32sm(w2) — wlsin(w2) = 0

(5.1.40)

(5.1.41)

Solving equation 5.1.40 is the same as setting C\ =  c2 =  0. The reason is as follows. 

When Ci =  c2 =  0, equation 5.1.38 can be reduced to

f c3(iciCos(u;i) +  (3sm(wi)) +  c4(- iy 1sin(n;1) +  /3cos{wi)) =  0 
< (5.1.42)
[ c3wi -  c4/3 = 0

For non-zero solutions, the determinant of equation 5.1.42 is zero, i.e.

C3 =  C4 =  0 .

Since equation 5.1.40 and equation 5.1.41 are essentially the same and both of 

them are equivalent to equation 1.3.30 in the univariate case, the solution to w\ and 

w2 should also be the same as that of equation 1.3.30. Notice also that if the zth 

smallest solution to w\ and w2 is denoted as —  w\ti = w2 i > 1, can be derived 

through a simplified version of either equation 5.1.40 or equation 5.1.41,

w\COs(wi) +  /3sin(wi) —wism(wi) +  /3cos(u;i)
=  p2sm(wi)+2(3wiCos(wi)—wls'm(wi) =  0

(5.1.43)
-0

Equation 5.1.43 is equivalent to equation 5.1.40.

Similarly, it can also be shown that solving equation 5.1.41 is the same as setting

(5.1.44)
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Please refer to section2.3, chapter 2 for the detailed illustration of finding W{.

In terms of eigenvalues, after obtaining Wi and applying equation 5.1.34 and equa

tion 5.1.35, the zth eigenvalue is

(5.1.45)
w f  +  (32

A2li =  (5-1.46)
w f  +  /32

As to eigenfunctions, the zth eigenfunction related to the zth eigenvalue Ai  ̂ is 

( fl  i ( t j \denoted as . Using equation 5.1.37 and the condition that C\ = c2 =  0 and
\0 i ,*(*)/

Ca =  tfrC4’
f f i A t )  =  £-C4sm(wit)  +  c4cos(wit) ^  ^

{ g \ A l ) =  ^ c 4sin(u;^) c4cos(wiAt)

The unknown coefficient c4 can be solved using the orthogonality condition, as well

as the fact that f iA t )  = gfAt).  Since f* f iA t )  +  g l A ^ d t  =  1

f l S ) d t  = i  (5.1.48)

Hence, the solution to c4, f iA t )  and giAt)  are

2wf
‘ • - l / s n f r o  151481

/ zĉ  / P2
M t )  = «h,(t) =  J  .co eK t) +  W 2/?+  2s in K t)  , (5.1.50)

where zc; solves the equation cot (it;*) =

Similarly, the zth eigenfunction related to the zth eigenvalue A2,i is denoted as

I f 2A  ) j Following the same calculation procedure for finding f \  i(t)  and g\ p t ), the

value for / 2,t(£) and <72,* M are

/ zĉ  / P2
M t )  =  - 9 2 , ( 1) =  J  2/3 +  ^ .— cos(Wit) +  W 2/?+ 2sin(Wit) , (5.1.51)



where Wi solves the equation cot(io*) =

In short, the bivariate Karhunen-Loeve expansion to the bivariate Ornstein-Uhlenbeck 

process can be summarised in lemma 5.1.2.

L em m a 5.1.2. The bivariate Karhunen-Loeve expansion to the bivariate Ornstein- 

0 ( t ) \
with the covariance matrixUhlenbeck process

i

\ Y®/

cov(X(t ) ,X(s )) cov(X{t),Y(s))  

^co«(X (s),y (t)) cov{Y(t),Y{s)) J

/ exp{—(3\t — s|) pexp(—/3\t — s|)

can be expressed as

f x ( t ) \

[ m )
= E

Z>1
V

<1̂J> \
2

'1±R —, /L=£
2 v  2 j

^pexp(- (3 \s - t \ )  e x p ( - P \ t - s \ )  y
(5.1.52)

1

««?+^

2 w\
— j  —  — COS{Wit) +

2 (F
■s i n ( w i t )

2(3 +  wf +  (32 ' y 2(3 +  wf  +  (32

where £* and £' are mutually independent standard normal random variables and Wi 

solves the equation

cot(wi) : -

2(3wi
(5.1.53)

The bivariate process
{nt)j

can also be expressed as a linear combination of two

independent Ornstein-Uhlenbeck processes X'{t) and Y'(t).  That is
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where

dX'(t)  = —PX'(t)dt  + rdBi(t) 

dY'(t)  = - 0 Y \ t ) d t  + rdB2(t) ,

f f 2
with initial condition X  (0 ) ,y  (0) i.i.d. ~  N ( 0 , ^ )  and Bi(t) and B 2{t) are two 

independent Brownian motion.

In the above two examples, the bivariate Brownian motion and the bivariate 

Ornstein-Uhlenbeck process share almost the same covariance structure, which is

1 p \CO v p O M ^ O s ) )
,p 1

(5.1.55)

This covariance structure results in the same Karhunen-Loeve expansion for both of 

the processes, which is

{ % )  -  ( f  - ( t )  P  ■

where X(t)  and Y(t)  are the correlated processes, while X  (t) and Y  (t) are the 

corresponding independent processes. This is not a coincidence. The following the

orem guarantees that equation 5.1.56 is the right Karhunen-Loeve expansion for the 

bivariate process with the covariance structure mentioned in equation 5.1.55.

T h eo rem  5.1.3. Assume that X ( t ) = is a bivariate process with the co-

i p

\ X i  M J
, where t G T  and 0 < p < 1. If  the

v  V
variance matrix cov(Xi(t), Xi(s))

univariate Karhunen-Loeve expansion for Xi(t)  and X 2(t) is

Xi(t )  = X 2(t) = ^ 2  y f c m n  Ti ~  i-i.d.N{f), 1)
i> 1
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there exists a bivariate Karhunen-Loeve expansion for X( t )  expressed as

\X 2  (t) ) i> 1

V2
(0 

\ V 2 /
— +  p)^i * ft +  5 Z  _  p)^

i> l

where £* and are the mutually independent standard normal random variables.

I f  \ f ew, f i ( t) and gi(t) represent the ith eigenvalues for the bivariate expansion, 

the ith eigenfunction for Xi(t)  and the ith eigenfunction for X 2 (t) respectively, the 

above expansion means that

\new _  (1 -j- p)Â  

X?e w = ( l - p ) X i

f i ( t )  =  

/tW  =

V2

\/2

-

PtW =  - V2

or

Proof. The bivariate Fredholm integral equation in this case is

/, \ /
’T

V

/ i ( s )

PtW
ds = Xnew

This is equivalent to

(5.1.57)

(5.1.58)

(5.1.59)

J K{t,s)f i(s)ds + p  j  K(t,s)gi(s)ds = X?ewfi(t) 

p J  K(t,s) f i( s)ds + J  K(t,s)gi(s)ds = XYewgi(t) , 

where K (t , s )  = cov(Xi(t) ,Xi(s)) .

Subtract equation 5.1.58 multiplied by p from equation 5.1.59, we obtain

(1 -  p2) J  K ( t , s)gi(s)ds = X?ew9i(t) -  X?ewpfi(t) (5.1.60)

Similarly, subtract equation 5.1.59 multiplied by p from equation 5.1.58, we obtain 

(1 -  P2) J  K(t,s)f i (s )ds  =  A?ewfi(t) -  X^ewpgi(t) (5.1.61)
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Add equation 5.1.60 and equation 5.1.61.

(1 +  P )  f  K (t,s)[fi(s)+gi(s)\ds = Afew [/»(£) +  gi(t)\ (5.1.62)

Subtract equation 5.1.60 from equation 5.1.61.

(1 -  P) J 5)[/*(s) “  9i{s)\ds = A ?ew[fi(t) -  gi(t)\ (5.1.63)

Both equation 5.1.62 and equation 5.1.63 can be now treated as the Fredholm 

integral equation for the univariate process with kernel function K(t ,s ) .  Therefore, 

the eigenvalues and the eigenfunctions can now be derived using the result of the 

univariate process. In terms of the eigenvalues, from equation 5.1.62, Afew =  (1 +  

p)A*, while from equation 5.1.63, Afew =  (1 — p ) \ .  Since both of the eigenvalues 

should solve the integral equation 5.1.57, the possible solutions to the eigenfunctions, 

as well as the eigenvalues, should be

where C\ and C2 are constants. Both C\ and C2 can be derived using the orthogonality 

condition

Anew =  (i +  p) \ i} f.(t) +  9i(t) =  ci&(*), fi(t) -  gi(t) =  0 or

Anew =  (i _  p ) \ u /.(£) _  g.(t) =  c2<&(£), /*(£) +  &(£) = 0 ,

(5.1.64)

When Afew =  (1 +  p)Ai} fi(t) =  =  f  hence

(5.1.65)

Hence Ci =  y/2. Similarly, C2 =  y/2. Therefore, the zth eigenvalue and the zth 

eigenfunction are

new

new



In the next section, theorem 5.1.3 will be extended to a more complicated multi

variate setting.

5.2 M ultivariate Karhunen-Loeve expansions

In this section, the results from the univariate time, bivariate state, Karhunen-Loeve 

expansion are extended to the univariate time, multivariate state, Karhunen-Loeve ex

pansion. The idea behind both is the same. Assume X (t)T =  ^Xi(t), X 2(t), ••• , Xd 

is a d-dimensional stochastic process. Each X{(t) is defined on the interval [0, T]. X(£) 

is further assumed to lie in the multivariate H x  space equipped with the finite energy 

Y2i=i E(X?(t))  < oo. Its inner product is defined as

d
< X ( t ) ,Y ( t )  > =  E (X (tfY ( t) )  =  (5.2.1)

1 = 1

given X (t) ,Y (t) G Hx- Using properties of the expectation, the above inner product 

can be shown as a valid inner product. In the multivariate setting, assume that the 

eigenfunction for each Xi(t) is

Under certain condition (equation 5.2.21 and equation 5.2.22), which assumes 

continuity of the covariance function after lining up the process, the lining-up method 

is used again to this d-dimensional process and a new stochastic process U (t ) is formed 

and defined on the interval [0, dT]. The corresponding eigenfunction for U(t) can be
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defined in the same way as that in the bivariate case.

Xi(t) 0 <  t < T

Xi(t  -  (i -  1)T) (i — 1 )T < t  < iT

X d( t - ( d - l ) T ) ( d - l ) T  < t <  dT

f m (t) 0 < t  < T

1)T) (i — 1 )T  < t  < iT

( d - l ) T < t <  dT

(5.2.2)

(5.2.3)

Then for (z — 1)T <  t < i T , 1 < i < d and (j — 1)T < s < j T , 1 < j  < d, the 

covariance function Kij( t , s )  between U(t) and U(s) can be expressed as

K i j fa  s) = co v (U ( t l  U(s)) = co v[Xi{t -  (i -  1 )T ) ,X j ( t  -  (j -  1)T)] (5.2.4)

For d-dimensional processes, the Fredholm integral equation is equivalent to the d 

simultaneous integral equations. Each of them corresponds to a specific time interval 

of U(t). For (z — 1)T < t < i T , 1 < z < d, the Fredholm integral equation yields

pdT
/ co v(U(t), U(s))<f>(s)ds = \(f>(t) (z — 1)T < t < i T , l  < i < d (5.2.5)

Jo

Replace U(t) with the corresponding Xi(t),

[  cov[Xi(t -  (z -  1)T), X i(s )] /(1)(s)ds 
Jo

p2T
+ /  cov[Xj(( -  (i -  1 ) T ) , X 2(s -  T ) ] f ^ \ s ) d s

pcLT
+  ■ ■ • +  /  cov[X;(t -  (i -  1 )T), X d(s - ( d -  1 )T)]fW(s)ds

J{dL-\)T

= A /(i)(* -  (* -  1)^) {i -  1)T < t < iT, 1 <  i < d
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After some rearrangements, the above equation can be simplified to

V  f c o y [ X i ( t  -  (i -  1 ) T ) , ^ ( S)]/W(5)d5 =  A/« (<  -  (i -  1 )T)
j = l
(f — 1)T < t <  iT , 1 < z < d

This is equivalent to the statement that when 0 < t < T,  the Fredholm integral 

equation is expressed as 

d ~T
J 2  cov[Xi( t) ,Xj (s)]fl-:''>(s)ds =  A /W(t) 0 < t < T  (5.2.6)
j=i Ja

In the multivariate setting, the orthogonality condition is

pdT d „kT
/ 0i(s)0j(s)ds =  Sij f i k)(s - { k -  1 ) T ) f f \ s  - ( k -  1 )T)ds = 8i:j

JO J(k-1)T
(5.2.7)

This is equivalent to

Y Z  [  f i k\ s) f j k)(s)ds = Sij (5-2.8)
fc=i

A version of Mercer’s theorem in the multivariate setting has been rigorously 

proved in Mahram et al. (2002). See, appendix 7.1, for the statement of the generalised 

Mercer’s theorem. Here the result for the covariance function is briefly shown using 

the lining-up method.

Assume that the covariance function is continuous after lining up the process. For 

(i — 1)T < t < i T , 1 < i < d and (j  — 1 )T  < s < j T , 1 < j  < d, the covariance 

function Kij(t,s)  between Xi(t) and Aj(s) can then be expressed as

K i:j(t , s) =  cov(U(t),U(s)) = cov(Xi(t),  Xj(s))

=  Y X l ) T ) f k \ s  ~  U  ~  ! ) T )
fc>i fc>i
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This is equivalent to the statement that for 0 < t, s < T,

(5.2.9)
fc>l

The above results could be further expressed in the matrix form. Defining the covari

ance matrix K(£,s) =  cov(X(i), X(s)) and the eigenfunction f ( t )  as follows

f c o v (X 1( t ) ,X 1(s)) c o c o v ( X 1( t ) ,X d(s))\

K  ( t , s ) =  cov(X2(t) ,Xi(s))  cov(X2( t ) ,X 2(s)) ••• co v ( X 2(t), X d(s)) 

ycov(Xd(£),Xi(s)) co v (X d( t ) ,X 2(s)) ••• co v ( X d(t), X d(s)) J

! { t f  =  ( /( ') (() , /P )(t), /«>(())

Notice that f{t)  defined above is a column vector, while f( t )  in the previous section 

represents the univariate eigenfunction for a univariate process. For the multivariate 

process X(£), t G [0, T], its multivariate Karhunen-Loeve expansion can be expressed 

as

X (t) =
Xl(t) s ? \ t )

i>l i> 1

V/i“°(o y

where & ~  z.L(i/V(0,1). Then, the Fredholm integral equation is

K (s,t) f{s)ds  =  A f( t ) (5.2.10)

with the orthogonality condition

Mercer’s theorem is

[  f i(s)Tfj(s)ds = 5i3 
Jo

k (m )

(5.2.11)

(5.2.12)
i> 1



200

In the multivariate setting, the eigenfunctions are vectors, while the eigenvalues are 

still scalars.

The multivariate results for the Karhunen-Loeve expansion will now be expressed 

using the generalised Mercer’s theorem. A theorem, similar to theorem 1.2.1 in chap

ter 1, will be proposed and proved here.

T h eo rem  5.2.1. LetX(t )  G Hx, t G T  be a zero mean vector process with <

oo. Its covariance matrix is denoted as K (s ,t) for the covariance between time s and 

time t.

Let {f i } be the orthogonal eigenfunction vector, i.e.

=  ‘ (5.2.13)

1. Assume that Ai and 4>i(t) satisfy the following equation ,

J  K(t,  s)fi(s)ds = Aifiit)  (5.2.14)

where { f i , i  G N } and {A ,̂z G N } are called the eigenfunctions and eigenvalues 

respectively in the multivariate setting.

Furthermore, choose

Pi =  J  f i( t)TX( t)d t  (5.2.15)

Then
v

X(t)  = lim y ^ P i f i i t )  (5.2.16)p—>00 *
i—1

The limit is defined in the sense of mean square convergence.

2. Conversely, i fX ( t )  = Pifi{f), where {pi,i G N }  is i.i.d. with mean 0 and

variance Ai}

J  K(s, t)f i(s)ds = Xifi(t) (5.2.17)
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Proof. The proof is also similar to that in the univariate case.

(a) We first show that E(pi) =  0 and cov(pi,pj) = \i5ij

E (Pi) =  E ( J ^ M t) X ( t )d t )  =  J ^ M t ) E ( X ( t ) ) d t  =  0 

cov(pi,Pj) =  E(piPj) =  J  J  f i( t)TE (X ( t ) X ( s )T)fj(s)dsdt

= J  fi{t)T J  K(s , t) f j (s)dsdt = J  f i i t Y X j f j t y d t

A i^ij

Moreover,

E (PiX ( t )T) =  E ( J  f i (s)TX (s)X { t )Tds)

= J  f i ( s ) TE ( X ( s ) X ( t ) T )ds

= A ifi(t)T

Therefore,

l|x (t)  -  E > / , ( t ) | | a
i=1

i= l  i
P P P

= < x ( t ) , x ( t )  > - 2  < x ( t ) ^ Pim  > +  < ^ 2 p i f i ( t ) ,Y ^ P i f i ( t )  >
i—1 i= 1 i= l

= E ( x ( t ) T x ( t ) )  -  2 e  E ( x ( t ) T p i ) f i ( t)+E E E { Pi } m T  Pim )
i= l  z=l j = 1

= B(x(t)rx(i)) - 2 e  \ m T m +E E E { PiPj) m ) T m
i— 1 i= l  j = l

p d p

= E ( X ( t f X ( t ) )  -  E k f i ( t ) Tf i ( t )  =  E w2) -  E Aftrace(/i (t)T’/i(0 )
i= l  i= l  i= l
P P

= trace(K(t, £)) -  \ itra,ce(fi( t) f i(t)T) =  trace[K(f, £) -  ^  Ai/ i( t) /i (t)T] -> 0
t= l  i= l
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The limit follows from the generalised Mercer’s theorem. Appendix 7.1 states the 

generalised Mercer’s theorem. See, for example, Mahram et al. (2002), for proof.

(b) Conversely, if X(t)  = Pifi(t),
oo oo

K ( t , s )  =  E ( X ( t ) X ( s f )  =  EE E{pifi( t)pjf j{s)T)
i=i j=i

oo oo oo

i= 1 j—1 i= 1

and the integral equation is

J ^ K ( t 1s ) f i(s)ds = J ^ 2 ^ j f j { t ) f j { s ) Tf s{s)ds

= [  f j ( s )Tfi{s)ds
j Jt

=

□

We use two approaches above to derive the multivariate Karhunen-Loeve expan

sion. One is to use the lining-up method to transform the multivariate problem to 

a univariate problem, when the covariance function, after lining up, is continuous. 

The other approach relies on the generalised Mercer’s theorem and derives the mul

tivariate Karhunen-Loeve expansion to all X(£) in the space of Hx- The latter is a 

more general approach, while the former might cast doubt on applying the univariate 

Mercer’s theorem after lining up, since the corresponding covariance function might 

not be continuous. For example, to the d dimensional vector Brownian motion X(£) 

with cross covariance function cov(X*_i(t), Xi(s)) = pmin(£, s), 0 < £, s < T,  if the 

covariance function is continuous after lining up,

limt /T cov(X i_i(*), X i(0)) =  limt/ r cov(X f_ i( i) ,X i_ i( f ) )  , (5.2.18)
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where the limit in the equation is a limit from the left. However

limt^TCOv(Xi-i(t),Xi(0)) = p x  0 =  0 (5.2.19)

l im ^ Tcov(Xi_i(t),X i_i(t)) =  l im ^ Tmin(£) =  T  (5.2.20)

Since equation 5.2.19 and equation 5.2.20 are not equivalent, the continuity assump

tion in the univariate Mercer’s theorem, after lining up the vector Brownian motion, 

is not satisfied. Hence the lining-up approach is not suitable in this example.

Remark 5.2.1. As mentioned in Mahram et al. (2002), checking the continuity in the 

covariance function is the same as checking the mean square continuity of the process 

after lining up. In the multivariate setting, this is equivalent to checking the mean 

square continuous at the transition point in the process X (t), i.e.

Um4Xr£ [ | ^ i ( t - r )  - X i ( 0 ) | 2] =  0 1 < i < d  (5.2.21)

\imt/^xE[\Xi^i(t) — .Xj(0)|2] =  0 2 < i < d  (5.2.22)

The first equation is a limit from the right, which is always right, since it involves 

only one process. However, the second equation, which is a limit from the left, goes 

through two processes and does not equal to zero to some often used processes in 

this thesis. Again use the example of the vector Brownian motion with the cross 

covariance cov(X j_i(t),Xi(s)) = pmin(£,s), 0 < t ,s  <  T

l i m ^ O X ; - ! ^ )  -  ^ ( 0 ) |2] =  Var[Xj_1(t) -  * ,(0 )]

=  lim(/ TVai'[yY,_,(<)] +  Var[X,(0)] -  2cov[Xt_](i),X,(())} = \ im,yTt. =  T ^  0

If the vector process X (t) is mean square continuous, both approaches are equivalent, 

since the covariance function is continuous after lining up the process.
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Theorem 5.1.3 in the last section is extended to a more complicated multivariate 

setting. It can be proved that if the vector process X(£) =  AY ( t ) ,  where Y (t) 

is independent and A  is orthogonal, the multivariate Karhunen-Loeve expansion of 

X(t) can be expressed in terms of the univariate Karhunen-Loeve expansion of Y (t ) 

of each its component.

T h eo rem  5.2.2. For a vector process X ( t )T = X 2(t), • • • , X d( t ) ^ , t €

T ,  assume X (t) =  AY ( t ) ,  where A  is an orthogonal matrix, i.e. A TA  =  I, and 

Y ( t ) T = ^Y 1(t), Y2(t), ••• is an independent vector process, i.e.

cov(Y*(*), Yj(s)) = 0, i f  i ^  j

I f  the univariate Karhunen-Loeve expansion for Yi(t) is

(5.2.23)
k>l

and i ^  when i ^  j ,  the multivariate Karhunen-Loeve expansion for  X(t) is a 

linear combination of the univariate Karhunen-Loeve expansion ofYi(t), i.e.

0 0 x 1 

o y r i  ■■■ °

fc>i

V o 0 Ark,d/

Cfc, 2

V o 4*k,d{fy J \ ek,d )
(5.2.24)

where {efc,i} i s  cl series of independent standard normal random variables.

Proof. Since X(£) =  AY(t), its covariance matrix is cov(X(t), X(s)) =  Acov(Y(t), Y (s))AT.

Hence the integral equation we need to solve is

't
Acov(Y(t),Y(s))ATf(s)ds = \ f { t )  , (5.2.25)
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where f ( t ) T = ^ / ^ ( t ) ,  ••• ,  and each f ^ ( t )  is the eigenfunction

for Xi(t) in the multivariate setting.

Since matrix A  is orthogonal, equation 5.2.25 is equivalent to

J  cov(Y(£), Y ( s ) ) A Tf(s )ds  = XATf( t )  (5.2.26)

We can further assume that

m  =  ATm = ( f ' W ( t ) ,  / '« ( ( ) )  (5.2.27)

The orthogonality condition of f'{t) follows from /(£).

J  f'i(t)Tf'j(t)dt =  J^f i(t)TAATfj (t)dt = = Sij (5.2.28)

Therefore the Fredholm integral equation can now be expressed as

^cov(Yi(s), Yi(t)) 0 0 \ ^ ,(1)(5)> ^ / '(I)( ^

0 co v(Y2(s),Y2(£)) •• 0 / ' (2)(S)
ds = A

/ ' (2)m

V 0 0 • co v(Yd(s),Yd(t)) j Kf ' {d)( s ) j v / '(,i)(«)y
(5.2.29)

This is the same as the following d simultaneous equations.

J  cov(Yi(s),Yi ( t) ) f^ i)(s)ds = A /'« (t) 1 < i < d  (5.2.30)

Now, the multivariate Fredholm integral equation of X (t) has been transformed 

to the univariate Fredholm integral equation of Y (t) of each its component. For the 

ith equation

J  cov(Y^(s),Y i ( t ) ) f k \ s )d s  =  Xkj fkH t)  , (5.2.31)
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where Ak,i is the kth  eigenvalue and f k \ t )  is the kth  eigenfunction, 

x k,i = A X,i f k %)(t) = (f)k,i(t) l < i < d , k > l

Since AjA ^  A* ■ when i ^  j ,  Ak,i 7̂  Ak,j when i ^  j .  However, Ak,i should be the 

common eigenvalue for all the components of the process X(£). Hence the solution 

to the above d simultaneous equations is

AM =  =  ^ ,iW . f k 2i W = /m }(0 =  • • • =  =  0, or

x k,2 = Afc)2, = 0, f ' $ ( t )  = (j)k,2 (t), =  • • • =  fj}d)(t) = 0, or

x k,d = f ’$ ( t )  = f*$(t )  = --■ = f'k{dd 1](t) = 0, = <l>ktd(t) ,

where f kj  is the j th  possible solution to the kth. eigenfunction of the process Yi(t). 

Notice that f k lj follows the orthogonality condition in equation 5.2.28.

Alternatively all the possible solutions to the fcth eigenfunction can be written 

down in the following matrix form

'(d) f+\ _

O )
C ( t )  f $ { t )'(2),

Ad)

\

(5.2.32)

)

Since f ( t )  =  A f ' ( t ), all the possible solution to the fk{t) can now be expressed as

/ f t ®  ■ ■ ■

) f $ ( t )  /$ (* )

V/m’w  /*2W  o * y
<d) (d)t

= A

(f>k,l(t) 0

0 4>k,2{t)

\

(5.2.33)

0 • • • /
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Therefore, the multivariate Karhunen-Loeve expansion for X(£) is

A )  u \ \  f  \ . n . . .  n \

xw = E
fc>i

/£ j ( 0

f l > )  / s w  

V/$w /Sw
f  v ^ r  o

0  y / X  k,2

(2),

=  E ^
fc>i

f m

C w  

/$ « ;  
0 

0

Xk, i o

0 Afĉ

V y/Xkj.)

0 0 • • •

(f>k, i(t)  0

o ^fc,2W

Cfc.l

e/c,2

Afc,d J \ eM J 

0 

0

4 ,d W /

Cfc, 2

VeM /  

□

Remark 5.2.2. Sometimes, although the correlated vector process X(£) can be written 

down as a linear combination of the independent vector process Y (£), i.e. X(£) =  

AY ( t ) ,  A  may not be orthogonal. However, it is still possible to write down the 

multivariate Karhunen-Loeve expansion of X(£) in terms of the univariate Karhunen- 

Loeve expansion, if A  satisfies the following three conditions.

(i) A = UD

(ii) UUT = / ,  i.e. U is an orthogonal matrix

(hi) Y '(t) = D Y( t ) ,  where Y ' {t)T = ^Y/(t), Y2'(£), • • • , is still an inde

pendent vector process, with the different eigenvalue for each new process Y({t) after 

transformation. Then X(£) =  AY ( t )  = U D Y ( t ) =  U Y '( t ) } where UUT = I.

If A A T is a symmetric positive definite matrix, i.e. A A T = UTUT, the above 

conditions satisfy if the new independent process has different eigenvalues for each of 

its component. Since A  can be written down as A = UT5, Y '(t) =  T^Y(t) is the new 

independent vector process. If each Y({t) has different eigenvalues, X(£) =  U Y ' i t ),
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with orthogonal matrix U. The multivariate Karhunen-Loeve expansion of X(£) can 

now be expressed using theorem 5.2.2.

Remark 5.2.3. If there is no decomposition of A  of this kind, the multivariate Karhunen- 

Loeve expansion of X(£) might not be expressible as a linear combination of the uni

variate Karhunen-Loeve expansion of Y (t) following theorem 5.2.2. Since this linear 

combination might not solve the multivariate Fredholm integral equation. However, 

this linear combination can still be defined as so-called the Karhunen-Loeve-like ex

pansion. Although it might lack some attractive properties of the Karhunen-Loeve 

expansion, like the minimal mean squared error, analysis like simulation and covari

ance reconstruction can still be implemented.

Theorem 5.2.2 can now be applied to prove the following corollary, which is an 

extension of theorem 5.1.3 in section 5.1.

C oro llary  5.2.3. For a vector process X ( t )T = yXi( t ) ,  X 2(t), • • • , X d( t ) j ,  as

sume its covariance matrix K ( s , t ) can be expressed as K (s , t )  = cov(Xi(s) ,X i(t ))B,  

where B is a symmetric positive definite matrix.

tively. {eij ,i  > 1,1 < j  < d} is a series of independent standard normal random

Then the multivariate Karhunen-Loeve expansion for X( t)  can be written down as

(5.2.34)
i> 1

where A°ld and <f>i(t) is the ith eigenvalue and the ith eigenfunction for Xi(t)  respec■
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variables. U and F come from the eigenvalue decomposition of the matrix B, i.e. 

B  =  UFUT.

Proof. Since B is a symmetric positive definite matrix, it can be decomposed as

(5.2.35)

where UTU =  I  and F =

7 i 0

0 7 2

0 0

B = UFUt  ,

\
, l i  > 0,1 < i < d, 7i ±  7j- when i ±  j.

Id )
Hence the covariance matrix for X (t) can also be expressed as 

cov(X(f),X(s)) =  U[cov(X1( t ) ,X 1(s))F]UT (5.2.36)

An independent vector process Y (t) can now be defined with cov[Yi(t), ^ (s )]  =  

7iCov[Xi(t),Xi(s)]Jij, such that X(t) =  UY(t).  Therefore the kth  eigenvalue and the 

kth  eigenfunction for Yi(t) are 7iA£ld,/c > 1 and (f>k(t),k > 1 respectively. Since the 

eigenvalue for Yi(t) is different from that for Yj(t), i.e. 7iA£ld ^  when i ^  j ,

and U is an orthogonal matrix, the result in the corollary is a direct application of 

theorem 5.2.2. □

Remark 5.2.4. Corollary 5.2.3 can now be applied to prove theorem 5.1.3 in the

i  p
bivariate case in section 5.1. Since B  =

\p V

r  =
fi + p o ''

o 1 - p)
u  =

(±_ ± . \
y/2 n/2
1 1 

Vv^ V2j
(5.2.37)
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Hence using equation 5.2.34, the bivariate Karhunen-Loeve expansion for the bivariate
l  \

process is
X 1(t)

(t) j

f X,(t)  

yX2(t) j
=  £

i >  1

L  \
2

V

6,1 (5.2.38)

where £̂ 1 and £i)2 are the mutually independent standard normal random variables. 

This is the same result as what is derived in section 5.1.

5.3 Num erical m ethods

There are two approaches to implement the multivariate Karhunen-Loeve expansion 

in the multivariate setting. When the process is mean square continuous, the lining- 

up method can be applied to transform the multivariate problem into the univariate 

problem. The details of the numerical methods with respect to the univariate problem 

have been discussed in chapter 2. However, in practice, not all the processes are mean 

square continuous. A more general approach using the generalised Mercer’s theorem 

has to be applied, as discussed in section 5.2. Correspondingly, some adjustments to 

the numerical methods are required. This section can be treated as a generalisation 

of section 2.1 and section 2.2, chapter 2. The main numerical methods discussed here 

are still the integral method and the expansion method using the Fourier basis and 

the Haar wavelet basis. For simplicity, the interval T  =  [0,1]. Other intervals could 

be easily generalised.

In teg ra l M e th o d

Suppose that we have a vector process X (t)T =  X 2(t), • • • , Xd
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A and are used to denote the eigenvalue for the multivariate Karhunen-Loeve

expansion and the eigenfunction for X m at time t respectively. The Fredholm integral 

equation here is

co v ( X l ( t ) ,X 1(s)) cov(X1( t ) ,X 2(s)) 

cov(X2( t ) ,X l (s)) cov(X2(t),X 2(s))

covfX ^t), Xd(s))) 

cov(X2(t) ,X d(s))

=  A

[ c o v iX . i t ) ,^ ^ ) )  cov(Xd(t),X 2(s)) ••• cov ( X d( t ) ,X d(s))J 

/ <2)«

(  f m (s) \  

/ (2)(s)

{ f {d)(s))

ds

Assume that n points £*, 1 < i < n on [0,1] are used to approximate the integral, 

with 0 =  t0 < ti < t2 <  • • • < tn < tn+1 =  1. Then the approximation using the 

integral method can be expressed as

^cov(Xl (tj ) ,X i ( t i)) covlXiftj) , X 2(ti)) ■

*,(*<)) cov(X2(tj), X 2(ti)) ■n+1

E
0

cov(
c o v tx u t^ X jf c ) ) }  
cov(X2(tj),X d(tj))

\ °:ov

0

V
0 w. 

0 0

'{Xd{tj),Xi(ti))  cov (X d( t j ) ,X 2(ti)) ••• 

/ (2)(ti) = A  / (2)« ;)(2 ) 0
( d )w\ 7

Kf {d)(U)J

When the uniform integral method is used, 0 < i < n  +  2, 1 < j  < d,

while when the trapezium method is used, W q '* = = 2 ( n + i ) > ^ — 3  — ^  a n c ^

wij) = 7̂+1
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Or after re-arrangement with the notation

~  (Xmiti),  Xm(t2), 

and the j th  eigenfunction for the process X m,

, 4 m\ t n+2))

(5.3.1)

(5.3.2)

fcov(Xl t XT) cov(Xu X?) ■■■cov(Xu X j ) )

cov(X2,XT) cov(X2,X ? ) ■■■cov(X2, X j )

Kcov(Xd,XT) cov(Xd, X 2r ) ■ ■ cov(Xd, X d ) j

A 1} ■■ f m  \J (n + 2 ) d ( f i ' } / 2(1) •••
f ( 2 )  j ( 2 ) f (2)

J (n + 2 ) d =
f ( 2 )  j ( 2 )

v/iM A d) ■■' f ( n + 2 ) d / A d) A d)

/  ty(!) 0 •• 0 ^

0 W (2) . 0

I  0 0 ••

/ ( n + 2 ) d \  ( > 1  0
f (2)

J (n + 2 ) d

M  ,
J ( n + 2 ) d /

The following notation is introduced so that the notation used here is consistent with 

that in the univariate case.

( covfJSfi, X j ) cov(X!, X%) 

cov(X2, X j )  cow{X2, X l )

0 As

0 0

0

0

\

A(n+2 ) d  J

K  =

C O V ^ .X jA
cov(X2, X j )

(5.3.3)

Vc o v ( Xd, X ? ) cov ( Xd, X Z )  ■■■cov(Xd, X j ) /

( A 1}
M)  
J 2 ■ f m  \J (n+2)d 0  ■■■ 0 ^

/  =
i f f(2)

J 2
A  2)
J (n+2)d A = 0 a2 0

v/ f r(d)
J 2

A d )
J { n + 2 ) d / 1 ° 0 ••• \ n + 2 ) d j

I  w {1)(n+2)x(n+2) 0 0 ^
f^(n+2)dx ( n+2) d 0 (n+2)x(n+2) 0

V 0 0 K U x ( n +J
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VK is a weighted matrix for the approximation. When the uniform integral method 

is used, W  =  ;^>/(n+2)<ix(n+2)<f- When the trapezium method is used, each submatrix 

is identical and equals to

W w =

to 1—I o •• • 0 0  ^

0 1
n+1 • 0 0

0 0  ••
1

n+1 0

V 0
0  •• • 0 1

2(n+l) /

(5.3.4)

Thus, the Fredholm integral equation has been changed to the eigenvalue problem

K W f  = /A  (5.3.5)

under the orthogonality condition f TW f  = I. W ith <fi = W 1//2/ ,  we need to solve 

a symmetric eigenvalue problem W^KW*4> = 0A with the orthogonality condition 

0T0 = I. After obtaining 0 and A, the inverse transformation can be computed, 

/  =  W 5 0 .

The covariance matrix between X mi and X m2 can now be expressed as

'  ° \  /  (/,(“ 2))T

cov(X X T ) = ( f (r7ll) f (Tni) • • • \CUV^YVm i , y \ m 2 )  y j  1 , J 2  5 J J ( n + 2 ) d )(n+2)d J
00 a2 • •.

0 • ■ • \n+2)d J0

( m 2) \ T
( f r } )

( m 2 )( r(n+2)d
(5.3.6)

If the first p < (n +  2)d eigenvalues can explain most of the cumulative expected 

variance, the approximation of the covariance matrix at order p can be used.

/ a, 0 o \  A /i(m2>)T^

COv(Xmi, j Q  f t l ] :
0 A- 0

o v  V(̂ m2))7
(5.3.7)



214

E xp an sio n  M eth o d  1: th e  F ourier m e th o d

Let X(£)t  =  (^Xi(t) X 2(t) ••• Xd(t)^J be a d-dimensional vector process and
(77l}{$;, 1 <  i < M }  be a series of M  adequate Fourier basis functions. Denote '(£) 

the ith eigenfunction for the process X m{t) and f - m\ t )  can be expanded as
M

t \ t )  =  £ 4 r ^ ( * )  =  (A (m))r « w . (5.3.8)
fc=i

where

m l ,  1 =  (fli(i), e2(t), e,

( T j J m ) ) T  _  f > ( m )  A m )  j ( m ) \
— y a n  j a i2 J > y

while are the unknown coefficients for the expansion of the eigenfunction f -m (̂t ).

As in the univariate case, both sides of the integral equation are multiplied by each 

basis function and are then integrated one more time. Then the following equation 

can be obtained on the process X m

/ /  K^m,l\ s , t ) 0k{s )0 j{ t )d sd t  +  'y~'d{k /  /  AT(m,2)( s , t)6k{s)6j{t)dsdt
k=l k_1
M  p i  p \  M  p i

+  E 4 ?  /  /  K ^ ( s , t ) e k(s)ej ( t ) d s d t - \ i y ' d i™) ek{t)0j(t )dt  = o,
fc=l ^  •'0 fc=l •'«

where K^a'b\ t ,  s) =  c o v (X a(t), Xb(s)) ,  a, 6 =  1, 2, • • • , d.

Denote

+

B =

[ f K {a’b\s , t )0(s )e( t )Tdsdt 
Jo Jo

6(t)6(t)Tdt

( ( D <T ) ) T \ 0  • • 0^

p x M  ~
( D ^ r Apxp —

0 A2 • • 0

K( D ^ ) T , 1 °
0 •• A p j
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Then the equation on the process X m can be written down in the matrix form

^(m ,l)^(l)jT  4- ^ (m>2)(£)(2))'r  4- . . .  4_ A(™4) (Jj(d)^T _  B ( D ^ ) T A

j j { d ) A ( m , d )  _

The matrix form can be extended to the whole vector process X (t) by further denoting

( a w  a w  ••• a w \  /  b  o ••• o\
^ ( 1 ,2 )  ^ ( 2 ,2 )  . . . A (d,2)

A MdxMd ~ , B MdxMd  —
0 B  0

0 0 . . .  B

Finding the eigenvalue and the eigenfunction in the Fredholm integral equation is 

reduced to solving the equation

D A = A D B  (5.3.9)

This equation matches the one in the univariate case and is also a generalised 

algebraic eigenvalue equation.

E x pansion  M e th o d  2: th e  H a ar W avelet m e th o d

Under the same notation as chapter 2, the eigenfunction, using the Haar wavelet 

basis function {ipk(t)}, can be expanded as

M
(m ) (5.3.10)

fc=l

where

lp2 (t), • • • ,  -0m(O)
A m )  , (m )

a i\ -> a i2 i ”  ’ > iM J
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Using the Haar wavelet basis function, the covariance function can be expressed

as
M  M

EE (5.3.11)
*= 1 j = 1

Given data and the basis function, 2-D wavelet transform can be performed to com

pute the matrix A(a,b\  where A^a,b̂ = {a\j'b̂ }MxM- As in the univariate case, M  time 

points need to be sampled at U = 1 <  i < M  and M  should be a number which

is the power of two.

The integral equation on X m for the ith  eigenvalue and the ith  eigenfunction is

[  K (-m'1\ s , t ) S l l)ds+ j  K l'm'2\ s , t ) f - 2)ds+ j  K l-m4\ s , t ) r t d)ds = \ f l m} (5.3.12) 
Jo  Jo  Jo

This is equivalent to

®T(t)A(m'1)flrUi(1) +  tfT(t)4 (m'2)ff£>j2) +  • ■ • +  =  Ai'pr (t)£>(’n) ,

(5.3.13)

where H  = f  ^ ( s ) 1̂ T(s)ds is a diagonal matrix. Or written in a matrix form for the 

first p eigenvalues and the first p eigenfunctions, equation 5.3.13 can be expressed as

T»(i)^A(m’i)^ (i) +  D i2)H A(m’2)^ (i)  +  • • • +  D {d)H A {m'd̂ { t )  = A (5.3.14)

The coefficients of ty(t) should be equal to both sides of equation 5.3.14.

D {1)H A m  +  D {2)H A {m'2) +  • • • +  D {d)H A im'd) = A D {m) (5.3.15)

Multiply both sides of equation 5.3.15 by H 5

D m H5H?A(m’1)H ’‘ + D m H ^ H ^ A {m:2)H i  +  • • • +  D id)H ^ H ^ A im4)H^  =  A D (m)Hs  

(5.3.16)
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Furthermore, for 1 < i , j  < d, define

£)(i) _  £ ) ( < ) #  J

i< «) =

Then equation 5.3.16 is also equivalent to

Denoting

^(2,1) . . .  jW l)^

,4(1.2) ^ (2 ,2) . . . £{N,2)

(5.3.17)

A MdxMd =

A & d )  . . .  j [ ( d , d )  j

DpxMd = (f)(1) ̂  f)( 2)̂  . . . ^ £)(d))

Finding the eigenvalue and the eigenfunction of the Fredholm integra equation is 

reduced to solving

D A  = AD  (5.3.18)

The eigenfunction can now be written as

/ <m)(t) =  D(m)'HT(t) = D {m)H-i<ZT (t) , 

where =  (/<"*>(*), /<"*>((),

Example: T he bivariate O rnstein-Uhlenbeck process

(5.3.19)

X ( t )
Assume that there is a bivariate Ornstein-Uhlenbeck process ( w  I with the

\ Y ( t ) J

covariance matrix exp(—\t — s|) ( ^  ] • p  is chosen to be 0.3 here. Since the ana-
\ p  v

lytical solution has been calculated in section 5.1, the analytical solution can be used
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A, 1 2 3 4 5 6
Analytical 0.9604541 0.5171676 0.1794049 0.0966026 0.058615 0.0315619

Trapezium(n =  200) 
Error

0.9618451
0.14%

0.5179166
0.14%

0.1794054
0.00%

0.0966029
0.00%

0.058835
0.38%

0.0316804
0.38%

Haar (M=256) 
Error

0.9604591
0.00%

0.5171703
0.00%

0.179409
0.00%

0.0966048
0.00%

0.0586186
0.01%

0.0315639
0.01%

Table 5.1: The eigenvalue comparison between the analytical solution and that from 
the numerical methods for the bivariate Ornstein-Uhlenbeck process.

to compare with the solution from the numerical methods. We mainly concentrate 

on the performance of two numerical methods here. One is the integration method 

using the trapezium rule, while the other is the Haar wavelet method, because both 

of them provide good result in the univariate case.

The performance of the eigenvalues A;, i > 1 is analysed first. Table 5.1 provides 

a comparison for the eigenvalues between solutions from the numerical methods and 

the analytical solutions.

The error is defined in the same way as that in chapter 2 

Numerical Solution — Analytical Solution
Error x 100% (5.3.20)

Analytical Solution

It can be seen tha t both these methods perform consistently well again with the 

difference to the analytical solution smaller than 1%. The Haar wavelet method 

outperforms the trapezium method in this case, and its difference with the analytical 

solution does not appear until 5th decimal and onwards.

For eigenfunctions, the first two eigenfunctions are plotted for both X (t) and Y(t)  

in three different figures. Figure 5.1, 5.2 and 5.3 show the eigenfunctions using the 

analytical method, the trapezium method and the Haar wavelet method respectively. 

Notice that in all these three plots, the first eigenfunctions are the same for both X(t)  

and Y(t) ,  while the second eigenfunctions are different in sign, but same in modula.
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Zl ,i 1 2 3 4 5 6
Trapezium

Haar
0.0014685
0.0000635

0.0014685
0.0000635

0.0000047
0.0001779

0.0000047
0.0001779

0.0037380
0.0000517

0.0037380
0.0000517

Table 5.2: The difference of the eigenfunction between the analytical solution and 
the numerical solution for the bivariate Ornstein-Uhlenbeck process in terms of l\ 
measure.

This matches our analytical result.

The results by all these three methods are very close to each other. The difference 

between the analytical method and the numerical method can be measure by the l\ 

and l2, which has been mentioned in chapter 2 and defined as follows

j X 1
1,1 n j=i

iX(m)
l2,i \ j= i

where both Z*(m) and /^ (m) measure the difference of the zth eigenfunction between 

its analytical solution, 1 < j  < n, and its numerical approximation, f l m\ t j )

1 < j7 < n, for the process In this example tj =  where 1 <  j  < n  and

n = 202.

The powers in the summation of l f j m) and /^ (m) are 1 and 2 respectively, hence 

the information they provide is similar to the information provided by the bias and 

the standard deviation respectively. According to theorem 5.1.3, in this example the 

eigenfunction for X( t )  and Y(t)  should be the same except for the sign, hence 

and (k =  1,2 and i > 1) should be equal to each other and they can be further 

denoted as where Z^ =  l*i = h = 1,2 and i > 1.

Table 5.2 and 5.3 measure the difference of the first six eigenfunctions between
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h ,i 1 2 3 4 5 6
Trapezium

Haar
0.0017583
0.0004141

0.0017583
0.0004141

0.0000052
0.0025289

0.0000052
0.0025289

0.0126944
0.0049991

0.0126944
0.0049991

Table 5.3: The difference of the eigenfunction between the analytical solution and 
the numerical solution for the bivariate Ornstein-Uhlenbeck process in terms of l2 
measure.

the analytical solutions and solutions from the integral method and the Haar wavelet 

method, in terms of l\ and l2. In general, both li and l2 are quite small, which 

implies good approximations using both of the numerical methods. For the first two 

eigenfunctions and the fifth and the sixth eigenfunction, both li and l2 using the 

Haar wavelet method is smaller than that using the trapezium integral method. It 

means that the bias and the standard deviation for the eigenfunction approximation is 

smaller using the Haar wavelet method. For the third and the fourth eigenfunction, on 

the contrary, the trapezium integral method outperforms the Haar wavelet method, 

since both li and l2 is smaller using the trapezium integral method.

Figure 5.4 shows the reconstruction of the covariance matrix for X(t)  and the 

cross covariance matrix for X  (t) and Y  (t) using the trapezium method and the Haar 

wavelet method. The difference between two methods is still very small. As what is 

expected, the cross covariance matrix is actually squashed by the covariance matrix 

by p — 0.3.

At the same time, the difference between the analytical covariance matrix and 

the numerical approximation can be further checked using Zf(X, Y) and Y), 

where both the process X(£) and the process Y (t) takes the value at time point U, 

1 < i < n  for the covariance function if the analytical solution is known, or the 

covariance reconstruction if the numerical methods are used. As is mentioned in



221

first eigenfunction for X(t)
0.8

0.75

0.7

0.65

0.6
0 0.5 1

first eigenfunction for Y(t)

0.75

0.7

0.65

0.6
0 0.5 1

second eigenfunction for X(t)
0.8

0.75

0.7

0.65

0.6
0 0.5 1

second eigenfunction for Y(t)
- 0.6

0.65

-0.7

0.75

- 0.8
0 0.5 1

Figure 5.1: Comparison of the first two eigenfunctions of the bivariate Ornstein-
Uhlenbeck process, the analytical method.
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first eigenfunction for X(t)
0.8

0.75

0.7

0.65

0 0.5 1

first eigenfunction for Y(t)

0.75

0.7

0.65

0 0.5 1

second eigenfunction for X(t)
0.8

0.75

0.7

0.65

0 0.5 1

second eigenfunction for Y(t)
- 0.6

0.65

-0.7

0.75

- 0.8
0 0.5 1

Figure 5.2: Comparison of the first two eigenfunctions of the bivariate Ornstein-
Uhlenbeck process, the trapezium integral method (n =  200).
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first eigenfunction for X(t)
0.8

0.75

0.7

0.65

0 0.5 1

first eigenfunction for Y(t)
0.8

0.75

0.7

0.65

0 0.5 1

second eigenfunction for X(t)

0.75

0.7

0.65

0 0.5 1

second eigenfunction for Y(t)
- 0.6

0.65

-0.7

0.75

-0 ,
0 0.5 1

Figure 5.3: Comparison of the first two eigenfunctions of the bivariate Ornstein-
Uhlenbeck process, the Haar wavelet(M  =  256).
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cov for X (Haar) cross cov between X and Y (Haar)

0 0 0 0

cov forX (Integral) cross cov between X and Y (Integral)

0 0 0 0

Figure 5.4: Covariance matrix reconstruction of the bivariate Ornstein-Uhlenbeck 
process between the trapezium integral method (n =  200) and the Haar wavelet 
method (M = 256), when the order for the Karhunen-Loeve expansion is p = 50.
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chapter 2, /i(X , Y) and Z^X, Y) are defined similar to l\ and I2 .

'2c,p(X,Y) =

1 n n

~2 Y ”  COVpI^&)> Y fe)]}n i=i j=i

\
1 n n

- j  ^ 5 Z { c o v [ X ( i i ) , Y ( « j ) ]  - c O T p [ X ( t i ) , y ( ^ ) ] } 2 ,
n

1= 1 J = 1

where cov[X(tj), Y(tj)] represents the analytical covariance function between X(U) 

and Y(tj) ,  while covp[X(U),Y(tj)] represents the covariance function using the nu

merical approximation between X(ti)  and Y(tj).  The subscript p is the order for 

the Karhunen-Loeve expansion when approximating coVp[X(^), Y(tj)]. In this exam

ple tj =  ^33;, where 1 < j  < n and n = 202. Again, the information provided by

(X, Y) and (X, Y) are similar to the information provided by the bias and the 

standard deviation respectively.

Table 5.4 and table 5.5 show and l^p for the covariance of X(£) and the 

cross covariance between X(£) and Y (t), versus the order p in the Karhunen-Loeve 

expansion using the trapezium method and the Haar wavelet method. For ZJ , in 

both the covariance and the cross covariance, it almost remains the same whatever 

the order p is. Since Zf provides the information on bias, the bias using the Haar 

wavelet method is smaller than that using the integral method. For l\ , in both the 

covariance and the cross covariance, it decreases when the order p increases. The 

rate of the decrease is not linear with p. For example, to Z£ (X, X) using the integral 

method, it reduces from 0.01 to 0.004 when p increases from 10 and 20, while the 

further reduction, when p increases to 30, is only about 0.0013, ending at 0.0027 

when p is 30. Since l\ to both numerical methods are quite close to each other, the 

performance of both methods should also be quite similar in terms of the standard 

deviation.
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lc 10 20 30 40 50
Zip(X ,X ), Trapezium 
ZiiP(X, Y), Trapezium

0.0004625
0.0001370

0.0004607
0.0001382

0.0004607
0.0001382

0.0004607
0.0001382

0.0004607
0.0001382

/;iP(X ,X ), Haar 
Z£ p(X ,Y ), Haar

0.0001226
0.0000398

0.0001265
0.0000380

0.0001267
0.0000381

0.0001268
0.0000381

0.0001269
0.0000381

Table 5.4: The difference of the covariance between the analytical solution and the 
numerical solution for the bivariate Ornstein-Uhlenbeck process in terms of l\ mea
sure.

lcl24 10 20 30 40 50
/cp(X ,X ), Trapezium 
Z2p(X, Y), Trapezium

0.0104989
0.0058256

0.0040907
0.0016355

0.0026866
0.0010530

0.0022628
0.0008267

0.0021003
0.0007232

2̂,p(X, X), Haar 
/2ciP(X ,Y ), Haar

0.0104070
0.0058122

0.0038221
0.0015714

0.0022435
0.0009473

0.0017045
0.0006863

0.0014753
0.0005589

Table 5.5: The difference of the covariance between the analytical solution and the 
numerical solution for the bivariate Ornstein-Uhlenbeck process in terms of l\ mea
sure.
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1st 2nd 3rd 4th 5th 6th
Trapezium (n =  200) 

Haar (M=256) 
Diff

1.7517087
1.745239

0.37%

0.6256485
0.6233377

0.37%

0.2547128
0.2547053

0.00%

0.2267902
0.2259525

0.37%

0.0909744
0.0909717

0.00%

0.0329771
0.0329618

0.05%

Table 5.6: The eigenvalue comparison for the tri-variate process with Gaussian kernel 
between the trapezium method and the Haar wavelet method.

Example: T he tri-variate process w ith  G aussian kernel

When the dimension of the process is more than 2, i.e. d > 2, it is harder to 

derive the analytical solution. An example, whose analytical solution is untractable,
f x ( t ) \

is presented now. The example analyses a tri-variate process

A
variance matrix exp[—(s — t )2]

Pi P2

Y(t) with the co-

Pi  1 P3 Assume that p\ =  0.3, p2 = 0.5 and

\ p i  p3 1 /
p3 =  0.7. Notice that the covariance kernel here is a generalisation of the squared 

exponential kernel exp(—(t — s)2) in chapter 2. The performance of the numerical 

solutions using the trapezium integral method and the Haar wavelet method will be 

briefly discussed.

For eigenvalues, table 5.6 looks at the difference between two numerical methods 

in this case, since no analytical solution can be found and therefore be regarded as a 

standard. Diff in the table is defined in the same way as tha t in chapter 2. 

Trapezium method — Haar wavelet method
Diff = x 100% (5.3.21)

Haar wavelet method 

Again eigenvalues calculated from both methods are close to each other. However the 

difference between both methods, which could be observed from the 2nd decimal and 

onwards, is slightly larger than that in the univariate case.

Also notice tha t the covariance structure in this example satisfies the condition
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Aoid 7i =  2.0179834 72 =  0.7207524 73 =  0.2612642
0.8648431
0.1262178

1.7452390
0.2547054

0.6233377
0.0909718

0.2259525
0.0329762

Table 5.7: The first two eigenvalues from the univariate squared exponential kernel 
exp[— (t — s)2] using the Haar wavelet (M = 256) and a further calculation for the 
eigenvalues of the corresponding tri-variate process with Gaussian kernel.

in corollary 5.2.3. Hence the eigenvalues can be alternatively derived from those in

the univariate squared exponential kernel exp(—(s — t)2). Using corollary 5.2.3, the 
(  1 0.3 0 .5 \

matrix 0.3 1 0.7

\0 .5  0.7 1 /

( 2.0179834 0

needs to be decomposed into UYUT, where

r =
V

0

0 0.7207524 0

0 0 0.2612642

U =
( 0.4896118 0.8314071 0.2627595 N\

0.5873968 -0.5372107 0.6052848

y0.6443953 -0.1420105 -0.7513906/
(5.3.22)

Then the eigenvalues can be calculated from 2.0179834A°^d , 0.7207524A°^d and 

0.2612642A°^d , where A°^d is the eigenvalue from the univariate squared exponential 

kernel exp(—(s — t )2) (see section 2.3, chapter 2). Table 5.7 shows the first six eigen

values for this tri-variate process with Gaussian kernel derived from its univariate 

counterpart. Comparing the result between table 5.7 and table 5.6, the eigenvalues 

agree very closely using both approaches.

Since no analytical solution is provided to this tri-variate Gaussian process, the 

reconstruction of the covariance matrix can be implemented to assure that the numer

ical methods for the truncated Karhunen-Loeve expansion can actually approximate 

the true Gaussian kernel. Only the Haar wavelet method is used for the reconstruc

tion, since in general it provides consistent result and regards the eigenfunction as a
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,p 1 2 4 6 8
W x )

W Y )
^ ( X ,  Z)
U Y ,  Z)

0.44412172
0.2412762
0.1176594
0.0550000

0.0154236
0.0357256
0.0444346
0.1023139

0.0000980
0.0000294
0.0000490
0.0000686

0.0000980
0.0000294
0.0000490
0.0000686

0.000141
0.0000406
0.0000730
0.00010416

10 20 30 40 50
^ ( X .X )  
^ ( X ,Y )  
W  Z )

Y ,Z )

0.0001414
0.0000424
0.0000707
0.0000990

0.0001414
0.0000424
0.0000707
0.0000990

0.0001414
0.0000424
0.0000707
0.0000990

0.0001414
0.0000424
0.0000707
0.0000990

0.0001414
0.0000424
0.0000707
0.0000990

Table 5.8: The difference of the covariance reconstruction between the analytical 
solution and the numerical solution using the Haar wavelet method, for the tri-variate 
process with Gaussian kernel in terms of l\ measure.

function indeed.

Figure 5.5 shows the reconstruction. Again as what is expected, the plot for the 

cross covariance between X(t)  and Y(t)  (top right plot), the plot for the cross covari

ance between X(t)  and Z(t) (bottom left plot) and the plot for the cross covariance 

between Y(t)  and Z(t)  (bottom right plot), are squashed compared with the plot 

of the covariance of X{t)  (top left plot) by the corresponding proportion, pi = 0.3, 

p2 = 0.5 and p3 =  0.7 respectively.

Further checking of the covariance reconstruction using the Haar wavelet method 

can be performed by l\ measure and measure. In terms of /£, which can be regarded 

as the bias, whatever the covariance function or the cross covariance function, l\ 

decreases dramatically in the first few orders. The reduction of /f P(X, X) is about

0.429 when the order p increases from 1 to 2, while the reduction of Zf (X, X) is only 

about 0.015 when the order p increases from 2 to 4. From the order p = 2 to the 

order p = 8, Zf p(X, X) decreases first, and then increases. When p is bigger than
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cov for X

0 0

cross cov between X and Z

0 0

cross cov between X and Y

0 0

cross cov between Y and Z

0 0

Figure 5.5: Covariance reconstruction for the tri-vairate process with Gaussian kernel 
using the Haar wavelets (M = 256), while the order for the Karhunen-Loeve expansion 
is p = 50.
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,p 1 2 4 6 8
^ ( X .X )
*2,p(X,Y)
^ ( X .Z )
«.p(Y,Z)

0.4637025
0.2452395
0.1342348
0.1049386

0.1283918
0.0524192
0.0778016
0.1360755

0.0662803
0.0356934
0.0178559
0.0101084

0.0087658
0.0026297
0.0043829
0.0061360

0.0010238
0.0004755
0.0006684
0.0012397

2̂,p 10 20 30 40 50
^p (X ,X )
^ p (X ,Y )
^p (X ,Z )
«.p(Y,Z)

0.0009552
0.0002996
0.0004702
0.0006548

0.0009347
0.0002804
0.0004674
0.0006543

0.0009347
0.0002804
0.0004674
0.0006543

0.0009347
0.0002804
0.0004674
0.0061360

0.0009347
0.0002804
0.0004674
0.0006543

Table 5.9: The difference of the covariance reconstruction between the analytical 
solution and the numerical solution using the Haar wavelet method, for the tri-variate 
process with Gaussian kernel in terms of l\ measure.

10, /iiP(X, X) almost becomes a constant. Similar reduction trends exist in other ZJ 

measure with respect to the cross covariance functions.

The reason for the dramatic reduction of in the first few orders can be explained 

as follows. Assume that the zth eigenfunction for the vector process X(Z), t G T  

is f( t) .  Then K.i(t,s) and K £(£, s), the full covariance matrix and the truncated

covariance matrix at order p between time t and time s respectively, are expressed as
p

[Ki(Z, s)]ij = co v(Xi(t) ,Xj{s))  [K 2^ ,s ) ]u  = (5.3.23)
2—1

Therefore,
OO p

K i f a s )  = ^2X i f i ( t ) f i ( s )T K £(t,s) =  ^ 2  (5.3.24)
i= 1 z=l

Integrate Ki(Z,2) and apply the trace,
p OO p OO p

trace[ /  K i (t,t)dt] = /  tTa.ce[fi(t)fJ'(t)]dt = ^  A*trace[ /  fi(t)Tfi(t)dt]
Jr  i=i JT i=i ■'r

OO

=  £ A<
i— 1
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Similarly, integrate K £(£, s) and apply the trace,

Combine the results for K ^ t, s) and K ^ t, s) together,

(5.3.25)

(5.3.26)

Equation 5.3.26 can be regarded as an generalisation of equation 2.3.1 in the 

univariate setting. It can also be interpreted as the cumulative expected variance 

explained by the first p eigenvalues. In this example, T  =  [0,1]. Since the diagonal 

elements of Kx(£, s) are all equal to exp[— (t — s)2], then

It means that the first six eigenvalues already explains more than 99% of the cumula

tive expected variance. This explains why ZJ , which can be treated as bias, reduces 

dramatically for the first few orders and then remains very small.

Wherever for the covariance function or for the cross covariance function, the 

other measure 1% , which can be regarded as a measure for the standard deviation, 

decreases when p increases from 1 to 20. When p is bigger than 20, l \ v varies little 

and performs almost like constants. Again, Z£ decreases dramatically in the first few 

orders. This could also be explained by the cumulative expected variance, which is 

more than 99% using the first six eigenvalues.

J r  Jo

Use the first 6 eigenvalues listed in table 5.6.

=  0.9911 (5.3.28)
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5.4 The analytical m ultivariate Karhunen-Loeve 

expansion for the stationary linear stochastic  

differential equation (SDE)

In the above section, theorem 5.2.2 is derived for the analytical solution to the multi

variate state univariate time Karhunen-Loeve expansion from its corresponding solu

tion to the univariate Karhunen-Loeve expansion. If a correlated vector process X(£) 

can be written down as a linear combination of the independent vector process Y (£),

i.e. X(£) =  A Y ( t )  and A is orthogonal, the multivariate Karhunen-Loeve expansion 

of X (i) can be expressed in terms of a linear combination of the univariate Karhunen- 

Loeve expansion of each component of Y(t). In this section, theorem 5.2.2 will be

related to the setting of the stationary linear stochastic differential equation (in the

narrow sense). The stationary linear stochastic differential equation (in the narrow 

sense), according to Arnold (1974), is defined in the following theorem.

T h eo rem  5.4.1. Denote W (t) as an independent d dimensional Brownian motion. 

A stochastic differential equation

dX(t)  =  AX(t)dt  +  F dW (t)  (5.4.1)

is a linear stationary Gaussian stochastic differential equation (in the narrow sense) 

for a d dimensional vector process X(£), if the eigenvalues of A  have negative real 

parts, with initial condition X(0) ~  N(0 ,K ) .  K  solves the following equation.

A K  +  K A t =  - F F t (5.4.2)

or written as K  =  f0°° exp(At)FFTexp(ATt)dt
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Then for the process X(t),

E(X(t))  = 0 (5.4.3)

Kexp[AT(t — 5)1 t > s 
M X ( s ) , X ( t ) )  =  < Fl (5.4.4)

exp[A(s — t)]K s > t

The proof of theorem 5.4.1 provided in this section is shorter than that provided 

by Arnold (1974), since we only concern with the special case when the linear term A 

can be diagonalised and all the eigenvalues of A  are real. The proof using is through 

a transform of X(t)  to another process Y (t) = [ /_1X (t), where U is the eigenvector 

matrix of A  with each column of U corresponding to a eigenvector. The stationarity 

of Y (t) will be proven first. We shall use the following lemma

Lem m a 5.4.2. Consider a stationary Gaussian process

dX(t) = AX{t)dt  +  F dW (t)  (5.4.5)

I f Y ( t )  is a linear combination o fX ( t ) ,  i.e. Y ( t )  = LX(t ) ,  Y ( t )  is still a stationary 

Gaussian process when L is invertible.

Proof.

dY( t)  = LdX(t)  = LAX(t )d t  + L F dW (t )  

= LAL~l LX{t)dt  +  L F d W  (t) 

= A 2Y( t )d t  + F2dW{t)

where A2 =  LA L~l and F2 = LF.  If the initial condition for X(t) is X(0) ~

iV(0, K),  the initial condition for Y(f) is Y(0) ~  Y(0, K 2),where K 2 — L K L T. Since
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E(Y( t ) )  = LE(X( t ) )  = 0 and Var(Y(0)) =  Var(LX(0)) =  LVar(X(0))LT =  L K L T. 

Then K 2 satisfies the following equation.

A 2K 2 + K 2A l  =  LAL~1L K L t  + L K L t (L~1)t A t Lt  (5.4.6)

=  L ( A K  + K A t )Lt  = - L F F t L t  = - F 2F [  (5.4.7)

Moreover, A  and A 2 share the same eigenvalue. Let 7 be an eigenvalue of A 2. Then

7 solves the following equation

0 =  \A2 — 7 / |  =  \LAL~1 -  7LL_1| =  |L(A -  7 / )L " 1| (5.4.8)

Hence when A  has negative eigenvalues for the stationarity of X(£), A 2 = LAL~l 

also has the same negative eigenvalues. Since K 2 satisfies equation 5.4.7 and A  has 

negative eigenvalue, applying theorem 5.4.1, Y (t) is a stationary Gaussian process.

□

Theorem 5.4.1 can be proved when A  can be diagonalised and all the eigenvalues 

of A are real.

Proof. (Proof of theorem 5.4.1)

We have the SDE for the d dimensional multivariate process X(t)

dX(t) =  AX(t)dt  +  F d W (t )  (5.4.9)

with initial condition X(0) N(0 ,K) .

Assume that matrix A  has negative eigenvalues and can be diagonalised , i.e.
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U~lAU  =  T, where

r =

7i 0 

0 72
(5.4.10)

\  0 0 ■ • • 7dj

In order to calculate matrix exponential, a new random vector Y (t) = f /_1X(t) 

is defined. We only need to prove that Y (t) is a stationary Gaussian process, since 

X(t) is a linear combination of Y (t) and X(t) =  UY(t) .  Using Ito ’s lemma, the SDE 

for Y  (t) is

dY(t)  = U - 'dX f t )  = U~1AX.(t)dt + U~1FdW (t)

=  U - 1 AUU~ly.(t)dt +  U~l FdW {t)

=  TY(t )d t  + U - l F ( W { t )

The solution to the above SDE is given by Arnold (1974).

Y (t) =  $(*)[Y (0)+  [  $ ( s ) - 1U~1F(TW(s)] , (5.4.11)
Jo

where $(t)  is the solution to = T$(t)  with <E>(0) =  / ,  i.e. $>(t) = exp(I7). Since 

T is a diagonal matrix,

^exp(7it) 0 • • • 0 ^

0 exp(72t) • • • 0
m  = (5.4.12)

\  0 0 • • • exp(7dt)

Notice that E(Y( t ) )  — $(£)i?[Y(0)]. If the expectation of J5(Y(t)) is independent of

time t , E[Y(0)] =  0. For covariance function between t and s,
/•min(s,*)

cov(Y(s), Y( t ) )  = 4>(s)[Var(Y(0)) +
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Assume V =  U~1FF T(UT)~1 =  {u^}, then

F F t U~1̂ {u)~1 =  ^(u)~1V^(u)~1 =  {u^exp[—(7 i +  7 j)u\} (5.4.13)

Hence the  in teg ration  of equation 5.4.13 is

=  {_ ^ exp[—f a  +  7 > ] |om in M }
Jo l i  +  Ij

=  r ^ ij(e x p [ - ( 7 i +  7 j)m in (s ,t) ]  -  1 )

H + l j

Therefore,

/«min(s,q
$(s)  /  ^ { u ) - l U - l F F TU~l ^ { u ) - l du^{ t )T

Jo

■f(j) [ ^ ( ex p K 7i +  7 j)m in(5i Q ]  -  1) j

V' •
=  {------- 7—  exp(7 »s)exp(7 j t ) ( e x p [ - ( 7 i +  7 j)m in (s , t)] -  1 )}

l i  +  l j

{ ^ 7 % [exP (T 5  +  Ijt)  -  exp(7 j(t  -  s))]} t > s 

{ ^ - [ e x p ( 7 i5  +  Ijt) -  exp(7 i(s  -  t))]} s  > t

If Y (t) is sta tionary , cov(Y (s), Y(£)) is only dependen t on the  difference of s — 

t, hence th e  in itial condition for V ar(Y (0)) should be chosen to  cancel the  term  

{ ^ - e x p ( 7 is +  7 ^ )} .  Set K Y =  V ar(Y (0 )) =  { - ^ r } ,  th en  $ (s)V a r(Y (0 ))$ (£ )T =  

{ - ^ - e x p ( 7 iS +  7 jt)}.  Then

1 {— x - 1exP[77'(  ̂— s)]} — K Y Qxp[r(t — s)l t > s  
Var(Y(s),Y(*)) =  <J 1 7i+7j L '  "  (5.4.14)

{ - ^ - e x p [ 7i(s -  t)]} = exp[r(s -  t)]KY s > t

Notice that V  = U~1F F T(UT)~1 is a symmetric matrix, it means that vu > 0. 

Since K Y is a covariance matrix, the diagonal element of it should be non-negative.
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This implies tha t 7* < 0. Actually in the matrix form, the initial variance K y  is also 

the solution to the equation

TK y  + K Y T = - V  (5.4.15)

Equation 5.4.15 matches equation 5.4.2 in theorem 5.4.1. The matrix K y  is chosen 

so that Var(Y(s), Y( t) )  is a function of s — t. Together with E(Y( t ) )  = 0, Y (t) is 

stationary. Therefore X(t)  is also stationary.

After obtaining E (Y( t ) )  and Var(Y(s), Y(£)), we can calculate the corresponding 

expectation and variance for X(t).  With the initial variance matrix K  = UK y Ut

E(X(t))  = UE(Y(t) )  = 0 

Var (X(s),X(*)) =  £/Var(Y(s), Y ( t ) )U T

When t > s,

V ar(X (s),X (t)) =  t/Var(Y(s), Y( t ) )U T = UKY exp[T{t -  s)]UT

= f/ArYf/T(f/T)_1exp[r(t -  s)]UT = Kexp[AT(t -  5)]

When t < s

Var(X(s), X(t))  = UVai{Y(s) ,Y( t ) )UT = Uexp[T(t -  s)\KY UT 

= Uexp[T(t -  s)]U~1UKy Ut  = exp[A(i -  s)]K

□

Thus, the process X(t)  has been represented as a linear combination of an an

alytically tractable process Y(£). If Y (t) is an independent process, we can write 

down either the multivariate Karhunen-Loeve expansion or the Karhunen-Loeve-like 

expansion depending on whether U satisfies the condition mentioned in remark 5.2.2. 

The following theorem provides a way of checking whether Y ( t )  can be independent.
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T h eo rem  5.4.3. Assume the SDE for the vector process X( t)  is

dX(t) = AX(t)dt  + F dW (t)  , (5.4.16)

where A can be diagonalised and all the eigenvalues of A are real and negative. Y (t) =  

U~1X (t) is independent if and only if F F T =  UDUT, where U is the eigenvector 

matrix for A and D is any diagonal matrix.

Proof. Y(£) is independent if and only if matrix V = U~l F F T(UT)~l is diagonal.

Assume this diagonal matrix is D , then

D = U~1F F t (Ut ) - 1 (5.4.17)

This is equivalent to

F F t = UDUt  (5.4.18)

□

Combining the above theorems, under certain condition, we can write down the 

multivariate Karhunen-Loeve expansion of X(t)  as a linear combination of the uni

variate Karhunen-Loeve expansion of Y (t ) of each its components.

T h eo rem  5.4.4. Assume that the SDE for the vector process X( t)  is

dX(t) =  AX(t)dt  +  FdW {t)  (5.4.19)

I f  A can be diagonalised, i.e. U ^ A U  =  T, where T is diagonal matrix, the eigenvalues

of A are real and negative and F F T = UDUT, where D is any diagonal matrix. The

process X( t)  can be written down as a linear combination of an independent vector

process Y '(t) and X(t )  — b^Y '^), where
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(i) U  =  U 2 D 2

(ii) U 2 U ?  =  I ,  i.e. U 2 is an orthogonal matrix

(Hi) Y '( t )  =  D2Y ( t )  is still an independent vector process, with different eigen

value for each new process Y '(£) after transformation.

Then the multivariate state univariate time Karhunen-Loeve expansion o/X(£) is 

a linear combination of the univariate Karhunen-Loeve expansion o f Y f t )  of each its 

component.

Example: A  is negative sym m etric m atrix and F  = I

The SDE for the stationary Gaussian process X(t) can now be expressed as

dX(t) = AX(t )d t  +  JdW (t) (5.4.20)

Since A  is negative symmetric, A  can be diagonalised as UTAU = T, where UTU = I. 

We choose D =  / ,  so that F F T = I  satisfies the condition that F F T = UIUT = I. 

The process X(t) can be expressed as X(t) =  UY(t).  Since U is orthogonal, the

multivariate Karhunen-Loeve expansion of X(£) can be derived from the univariate

Karhunen-Loeve expansion of Y (t) of each its component, where Y (t) satisfies SDE

dY(t)  =  TY (t)dt +  UTdW(t)  (5.4.21)

Example: Conditional independence structure in F  and A — —I

The linear SDE (in the narrow sense) can sometimes be regarded as a continuous ver

sion of AR(1) process. For AR{  1) process, research on the conditional independence 

has been performed by Caines and Wynn (2007). This example extends the discrete 

case to its continuous counterpart in a special situation.

Assume that there is a tri-variate process X(t) = X 2(t)

\ M t ) J

. The SDE for X(t)
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here is written down as

f X i ( t ) )
d X 2(t) = - /

\ M t ) J

where I  is an identity matrix and

f M t ) ' ]
X 2(t)

\ x 3( t )J

dt +  F d W (t ) (5.4.22)

^ f l l  0 /i3^
F  =

\

(5.4.23)0 /22 /23

0 O / 3 3 /

Since, A = —I , any inverse matrix can be its eigenvector matrix. We therefore 

choose U =  F, so tha t F F T =  UIUT = F F T . The process X(£) can be expressed as 

X(t)  = FY (f), where Y(*) satisfies SDE

dY(*) -  - I Y ( t ) d t  +  IdW (t ) (5.4.24)

Depending on whether F  satisfies the condition in theorem 5.4.4 or not, we can 

decide whether the multivariate Karhunen-Loeve expansion for X(£) can be written 

down in terms of the univariate Karhunen-Loeve expansion.

For the conditional independence structure, only the inverse of the initial covari

ance matrix K  for the process X(£) needs to be calculated. See, for example, Rue 

and Held (2005). K  can be derived through solving

A K  +  K A t  = —F F 1 (5.4.25)

where A = —I. Hence

^ f n  +  f i 3 /13/23 CO

1 T 1
K  = - F F t  =  -  

2 2 /13/23 f2 f2J2 2 J23 723/33

\  ./13/33 / 23/33 / 323 /

(5.4.26)



\  h l f f ,  f 3 3 /2 2  / 1 1 / 2 2 / 3 3  /

Equation 5.4.27 contains the conditional independent structure and it matches the 

information in F. Hence one possible conjecture is tha t the conditional independence 

structure lies in the deterministic coefficient term of the Karhunen-Loeve expansion, 

since in this example X(t) =  FY(t) .

The original research of the conditional independence structure related to the 

multivariate Karhunen-Loeve expansion is to put the structure into matrix A, rather 

than matrix F. However, it is very difficult to derive an analytical expression for K ~ l 

using the truncated Karhunen-Loeve expansion, and the numerical calculation of K ~ l 

does not provide satisfactory results. Further research is needed in this direction.



Chapter 6 

M ultivariate Functional D ata  
Analysis

The idea of functional data analysis starts from Ramsay and Silverman (1997). Its 

property and application have drawn the interest from a wide range of researchers, 

see, for example, Boente and Fraiman (2000), James et al. (2000), Ramsay and Sil

verman (2002), Yao et al. (2005) and Hall and Hosseini-Nassab (2006). Functional 

data analysis can be regarded as an extension to a functional version of the principal 

component analysis. The canonical principal component analysis treats each data 

point in the data set as an individual discrete point and try  to find a direction in 

which the variance of the data set is best explained, while the functional data anal

ysis regards each data point from the data set as an observation from a continuous 

process and tries to find certain deterministic functions out of the process so that the 

variance of the process can be captured mostly by these deterministic functions. In 

this sense, the main idea of the functional data analysis is essentially the same as the 

Karhunen-Loeve expansion. In most of the literatures, the applications of functional 

data analysis have been restricted to the univariate case, where both the state and 

the time are one-dimension. In the time series applications, however, interest lies

243
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more in finding the relationship among different series. Since most time series in 

practice only have one-dimensional time, what is called “multivariate” in this chap

ter restricts to the process with the multivariate state and the univariate time. In 

summary, this chapter deals with multivariate functional data analysis (MFDA). It 

draws for intuition on chapter 5, in which a theoretical background of the multivari

ate Karhunen-Loeve expansion is investigated. Section 1 introduces the data set we 

use. Section 2 explains the decomposition using the numerical methods and the re

construction of the covariance and the cross covariance function. Section 3 provides 

a method for the smoothing and the prediction using the truncated Karhunen-Loeve 

expansion.

6.1 The introduction to the data

The method discussed in this chapter applies mainly to the weakly stationary time 

series. Since for the weakly stationary time series, the empirical version of the covari

ance matrix (see, equation 6.2.1) needed for the numerical methods can be calculated 

using the auto covariance function, while for the non-stationary time series, the empir

ical version of the covariance matrix might not be easy to derive. Once the covariance 

matrix is available, the method can be generalised to any other time series.

In time series analysis, a considerable number of statistical methods are based on 

the assumption that the series can be transformed approximately to weakly stationar- 

ity, so that the statistical analysis, such as the prediction can be performed relatively 

easily. However, most economics and finance data in reality are far from stationary. 

They can be observed non-stationary characteristics, such as trend and seasonality. 

In the case of non-stationarity, transformations, such as de-trending and differencing,
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can be made to produce a new series which is approximately stationary. 

In the multivariate setting, a d-dimensional series

x(<)T =  x 2(t), x d(t)) t e  N (6 .1.1)

is weakly stationary, if

(i) E[K(t)] is independent of t.

(ii) T(h) = cov[X(i +  h), X(t)] is independent of t for each h.

The data set used throughout this chapter is a tri-variate TAR{1)  process. As 

a representative process of the multivariate A R M  A  process, the multivariate AR(  1) 

process has been proved to be stationary and its structure is analytically tractable 

(see, for example, Brockwell and Davis (2002)). A tri-variate T A R (  1) process is 

defined in the following way.

where e(t) ~  N(0, 73x3)- For the existence of the unique stationary solution to 

T A R (  1), A  is chosen so that all its eigenvalues are less than 1 in absolute value. 

We further assume that we have n =  300 observations, i.e. t = 1,2, • • • , n =  300. 

Then the data set can be regarded as a simulated version of the daily observation for 

about a year time.

As an example of TAR{  1), A  is chosen as the following matrix,

Its corresponding eigenvalues are 0.5, 0.96309 and —0.46309, which are less than 1 in 

absolute value.

/ x 1(t )\ /Xi(t- 1)\
X 2(t) = A  X 2( t -  1) +e(t) , ,

( x 3(t)J \X3(« -  1)/
( 6 . 1.2 )

/  0.4 0 -0 .9  \

A =  0 0.5 -0 .89

y—0.54 0 0.1 j

(6.1.3)



246

Figure 6.1: Three simulated paths for the series X \ ( t ) ,  X 2 ( t )  and X 3 ( t )  respectively 
from TAR{1).

Three correlated paths for the series X i(t) , X 2(t) and X 3(t) ( t  =  1,2, • • • , 300) are 

simulated from the above TAR(l) with the initial value A'i(O) =  X2(0) =  X3(0) =  0. 

For simplicity of the future work, notation = 1,2,3 is further adjusted to

denote the series after removing its mean (centerised series), which is calculated as

Xi(t)  -  £  E J L i  Xi(j) \  t  =  1, 2, . . .  , 71, i  =  1, 2, 3.

Figure 6.1 shows one sample paths for X \ (£), X 2 ( t )  and X 3 ( t ) .  It can be seen that 

X \ ( t )  and X 2 ( t )  are quite close to each other, while X 3 { t )  has a negative relationship 

with the rest two series. This relationship can be roughly checked through the corre

lation coefficient, which is listed in table 6.1. Although the correlation coefficient is
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Xi  (0 M t ) * 3 (0
X 1(t) i 0.8813226 -0.8022594
X 2(t) 0.8813226 1 -0.7926202
M t ) -0.8022594 -0.7926202 1

Table 6.1: The correlation coefficients for X\(t) ,  X 2(t) and X^(t).

mainly used to check the linear relationship among different series in statistics, it can 

still provide us a brief idea of how the multivariate series is correlated. From table 

6.1, the correlation coefficient between X\(t)  and X 2(t) is about 0.9, while the corre

lation coefficient between X${t) and the rest series is about —0.8. The sample paths 

simulated in figure 6.1 will be used to demonstrate the truncated Karhunen-Loeve 

expansion in the covariance reconstruction, the smoothing and the prediction in this 

chapter.

6.2 Empirical M FDA

In practice, numerical methods play an important role when little is known about 

the time series data. In this chapter, the numerical method is the trapezium integral 

method. Although we have shown in the previous chapters that the Haar wavelet 

method is also numerically accurate and efficient, the number of the points involved 

to perform the wavelet transform is a power of two. However, in practice, the number 

of the data points varies, which might make the implementation of the Haar wavelet 

method inefficient. The trapezium integral method, on the contrary, does not have 

any restriction on the number of the data points as long as the number is suitable for 

approximating the integral. The main condition that the trapezium integral method
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has is that the data points are equally spaced, which satisfies most time series data 

sets. Therefore, the trapezium integral method is more practical to use and more 

flexible when dealing with the real data.

For the multivariate series, the trapezium integral method has been discussed in 

detail in chapter 5. Although X(t)  are only sampled at the integer points in this 

chapter, i.e. t =  1,2,--- , n, when approximating the Fredholm integral equation, the 

time interval involved is still assumed to be [0,1] for accuracy. Therefore, X(£) can 

actually be regarded as an observation at time point ^ in the approximation.

In order to approximate the Fredholm integral equation, we need to calculate the 

covariance matrix K  defined in equation 5.3.3 for multivariate series, i.e.

( c o v (X u X?)  cov(Xl t X j )  ••■cov(X1, X j ) \  

cov(X2, X f )  cov(X2, X j )
K  =

where

\co v (X d, X l )  cov(Xd, X [ )

(  * i ( lA

*i(2)

cov(X2,X j )  

co v (X d, X j ) J

( 6 .2 . 1)

X i  = (6 .2 .2)

\ X i ( n ) J

Since TAR(1)  is a stationary series, K  can be derived through the sample auto

covariance function T(h)  defined as follows

n —h

f( /i)  = - j y x f i +  / i ) - X ] [ X ( f ) - X ] T for 0 <  |/i| <  n -  1 (6.2.3)
t =  1

Since all the series have been centerised, X =  0. Properties of the sample autocor

relation function can refer to, for example, Brockwell and Davis (2002) and Brockwell 

and Davis (1991).
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Figure 6.2 shows the covariance and the cross covariance function for X \  (£), X 2{t) 

and X 3(t) using the sample autocovariance function. Since the number of the pairs in 

estimating the autocovariance function T(h) for lag h is n — h, the higher the lag, the 

less pairs are used in the estimation, hence the more variation there are in the result. 

It can also be clearly observed from the figure that X${t) has negative correlation 

with the rest two series, while the correlation between X\(t)  and X 2{t) is positive.

cov for X1 cross cov: X1 and X2 cross cov: X, and X 3

4
cross cov: X^ and X 1

30̂0oo"̂ 34o900'^^^o(?00
cov for X2  cross cov: X2  and X 3

%0>^10I?0(?00 ^ 9 o o ^ V i o ^ 00 ^ °9 o o ^ m j!0 (? 00 
cross cov: X j and X 1 cross cov: Xg and X2 cov for X%

)¥oô ^ ° (?00 3° % ^ ^ < ? 00 3̂ ^ o < ? ° °

Figure 6.2: The covariance and the cross covariance for X\(t) ,  X 2{t) and Xs(t)  using 
the autocovariance function.

Using f  (h), 0 <  \h\ < n — 1, we can estimate the covariance matrix K  and denote
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the estimator as f

r =

f l l  f  12

f*21 f  22

r ld\
^2 d

\ ^ d l  f d2 f

(6.2.4)

where is

< ^ ( 0 )  

f « ( l )

dd y

1 < i, j < d (6.2.5)

y t i j i n - l )  Tij  (n — 2) ••• f ^ ( 0 )

and f'ij(h) =  { f  Based on the covariance matrix estimator T, the eigen-

equation for the eigenvalues and eigenfunctions can be solved. As shown in section 

5.3, chapter 5, the eigen-equation is expressed as

r w f  = a f (6.2.6)

For the trapezium integral method, the notation in equation 6.2.6 is the same as the 

notation in section 5.3, chapter 5, i.e.

/  =

A =

/  1) f(l)J1 3 2
f  (2) A  2)

J 1 32

V/ld) / f

( A, 0

0 A2

0 0 A

f (1) , \J (n+2)d 
A2)
J (n+2)d

f (n+2)dj  

0 \

0

(n+2)d J
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W  =

W {i) =

( w W 0

0 w ( 2)

0 0

1
2(n+l) 0

0
1

n+1

0 0

0 0

0  ̂

0

0

0

1
n+1

\

1 <  i < d

0 1 
U 2 (n + l) /

Figure 6.3 shows the performance of the first 40 eigenvalues after solving the eigen- 

equation using the TAR(1)  data. The left plot of figure 6.3 displays their values. It 

can be seen that the eigenvalues decay relatively slowly. The value of the first 6 

eigenvalues are above 1, with the biggest eigenvalue at about 2.2527. For the next 

8 eigenvalues, i.e. from the 7th eigenvalue to the 14th eigenvalues, they appear to 

be clustering, with value in between 0.7857 and 0.4062. For the rest eigenvalues, i.e. 

from the 15th eigenvalue to the 40th eigenvalues, the decay rate is even slower than 

that of the first 14s, with the value for the 40th eigenvalue at around 0.0408.
ŷ p ^

The right plot of figure 6.3 shows / , which is roughly the cumulative expected
2^1=1

variance, discussed in section 5.3, chapter 5. Theoretically, when the analytical so

lution to the covariance function of the process is known, the cumulative expected 

variance should be expressed as
X.

2^»=i * (6.2.7)
E S i A ;

where the number of the eigenvalues in the denominator of equation 6.2.7 is infinity. 

However, in practice, only finite number of eigenvalues can be derived. In this exam

ple, the denominator of equation 6.2.7 is roughly approximated using since
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for the order higher than 40, the numerical calculation sometimes results in complex 

eigenvalues, due to the limitation of the computer package we use (Matlab 7.0.4). 

From the plot, it can be seen that the first 6 eigenvalues explain around 56.26% out 

of the first 40 eigenvalues, while the first 14 eigenvalues explain around 86.55% out of 

the first 40 eigenvalues. Again this means that the decay of the eigenvalues is quite 

slow. This is due to the complexity and the variation in the real data.

♦

1
0.9

* ★
§> 0.8 *
o ♦

8 0.7 *♦
*

c
?
> 0.6 *
.2 *

f  0.5 *

1 0.4
*

1 *
* i  os

« ♦
0.2•

0.1 *
0 1 1 1 1 1 1 1 T  ■ 0 . 1    4 1 1 1 1 1--------------

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

Figure 6.3: (Left): The first 40 eigenvalues of T A R(  1). (Right) The cumulativeŷ P
expected variance (rough) using 1 - .

Figure 6.4 shows the first three eigenfunctions. Although the original three series 

Xi(t),  X 2(t) and X 3(t) are very volatile due to the existence of the noise, the first 

three eigenfunctions are quite smooth. The first eigenfunction corresponds to the 

biggest eigenvalue. The direction of the first eigenfunction more or less follows the 

real series, except for the variation. Hence the first eigenfunction may be interpreted 

as a very rough “trend” factor. More accurate trend could be modelled using more 

eigenfunctions. The second and the third, possibly later eigenfunctions, start to
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capture the variation in the series. The figure also shows other three facts. Firstly, 

since the original noisy series can be decomposed into a brunch of smooth series, 

it is possible to use the truncated Karhunen-Loeve expansion to smooth the data 

in practice. Secondly, if the original series is reconstructed using the Karhunen- 

Loeve expansion, higher orders are preferred, since the first few eigenfunctions are 

too smooth to capture all the variance. In other words, it means that there are 

a proportion of the “energy” containing in the lower tail of the Karhunen-Loeve 

expansion. Last but not least, the correlation among three series is kept in the 

eigenfunctions. It can be seen that the eigenfunctions for Xl(£) and X 2(t) are highly 

positively correlated, while the eigenfunction for Xs(t) is highly negatively correlated 

with that for the rest two.

The covariance function can now be reconstructed using the truncated Karhunen- 

Loeve expansion. The order p is chosen to be p = 40. On one hand, the 40th 

eigenvalue is quite small, compared with the first few eigenvalues. Its value is actually

0.0408. On the other hand, as is mentioned, order higher than 40 sometimes results 

in complex eigenvalue due to the limitation of the computer package we use (Matlab 

7.0.4). However, as we have examined previously, there is a lot of energy in the tail 

terms of the process. Truncation at order 40 might affect the overall performance 

of the reconstruction. This problem might be able to be resolved using higher order 

through more stable and more powerful software, such as C  or C ++.

The other problem for reconstructing the covariance function using the truncated 

Karhunen-Loeve expansion is that the covariance matrix is no longer stationary after 

truncation. We now denote the truncated covariance function between X(£) and 

X(s) straightly after solving eigen-equation 6.2.6 as covp[X(£), X(s)]. To the TA R ( 1)
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Figure 6.4: The first three eigenfunctions for X \(t), X 2 (t) and X${t).

process plotted in figure 6.1, although both cov[X(£i),X(ti)] and cov[X(i2),X(£2)] 

represent the covariance function for lag 0 and are supposed to be equal to each 

other, their value after truncation at p = 40 is different.

(5.3076 6.4255 -3 .2874\

covpfX M .X fa)] = 6.4255 8.0213 -4.0437

y-3.2874 -4.0437 2.1216
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co Vp[X(£2),X (t2)] =

(  5.8108 7.0219 -3 .5476\

7.0219 8.7409 -4.3615

\-3 .5476  -4.3615 2.2742 J

The way of resolving this stationary problem in the current chapter is to replace 

each covp[X(f), X(s)] by the average of the truncated covariance matrix with the same

lag. We further denote the truncated sample autocovariance function with order p

and lag h as T A(h) after adjustment through averaging, the relationship between 

covp[X(t), X(s)] and f A(h) is as follows. When 1 <  h < n — 1

f p (°) =  \ X > v p[X(i),X(i)] (6-2-8)
i= 1

1 n—h n—h
+ M-XW] +  £ c o v „ [X ( j) ,X ( i  +  /i)]} (6.2.9)

 ̂ ’ i=1 i=l

Correspondingly, the covariance matrix estimator f , after averaging, is denoted

p ■
(  r Ap, ii f AP , 12

. f A \p,l^

r A =p
f  ■AP, 21 P, 22 •

i f A  \  p,dl f  A
P,d 2 ' /

(6 .2.10)

where f i s/'iV

v A =P,IJ

(  f  p y  ( 0 )  f £ y ( l )

f ;V ( l )  f'py(O)

\ f ^ ( n - l )  f ^ ( n - 2 )  

and i ^ ( h )  =  { f  £(/>)}«.

1 < i j < d  (6.2.11)
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True covariance function Truncated covariance function
X i(l) X2(l) * 3(1) X i(l) *2(1) *3(1)

X i(i) 7.5631 7.5493 -3.7207 4.2102/5.8543 5.2752/7.0777 -2.6317/-3.5970
*2(1) 7.5493 10.1721 -4.2506 5.2752/7.0777 6.6754/8.8820 -3.2866/-4.4367
*3(1) -3.7207 -4.2506 3.6355 -2.6317/-3.5970 -3.2866/-4.4367 1.6575/2.3775

Table 6.2: The covariance and the cross covariance function for X i(l) , ^ ( 1 )  and 
X}(1) using the untruncated (true) version and the truncated approximation. From 
the second to the fourth column: the true version; From the fifth to the seventh 
column: the truncated version. Value above “/ ” , p =  10; Value below “/ ” , p =  40.

Figure 6.5 and figure 6.6 show the covariance and the cross covariance function 

reconstruction for X i(t), X 2(t) and Xs(t) for the above TA R (l) process, using the 

truncated Karhunen Loeve expansion after truncation and averaging. The truncation 

order is 10 and 40 respectively. Since the first 10 eigenvalues only explain about 73% 

of the first 40 eigenvalues as mentioned above, the covariance reconstruction is not 

very good. Compared with the true covariance function, some values in the covariance 

function using p = 10 are much smaller. When the truncation order p increases from 

10 to 40, the performance of the approximation using the truncated Karhunen-Loeve 

expansion improves a lot. The shape of the true covariance function and that of 

the truncated version are quite similar to each other. However, some values using 

the truncated approximation are still smaller than that from the true function, even 

when using p = 40.

Table 6.2 further displays the value comparison of the covariance and the cross 

covariance function between the untruncated version (true version) and the truncated 

version for the lag h = 0. For both the covariance and the cross covariance function, 

when p increases from 10 to 40, the difference of the value between the true version 

and the truncated version decreases. It implies that higher order p can be introduced 

for better approximation. However, as is mentioned, current computer package used
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Figure 6.5: Reconstruction of the covariance and the cross covariance function for 
X \  (t), X 2 (t) and X s (£), using the truncated Karhunen Loeve expansion when p = 10.
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Figure 6.6: Reconstruction of the covariance and the cross covariance function for 
X \ (t), X 2 (t) and X 3 (t), using the truncated Karhunen Loeve expansion when p = 40.
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here (Matlab 7.0.4) is not powerful enough to handle large p.

In general, we can summarise the procedure of dealing with the multivariate data 

when using the multivariate Karhunen-Loeve expansion. The multivariate data can 

be the data either from the simulation or from the real database.

Step 1: Stationarise the data using certain transformation techniques, such as de

trending and differencing, so that the data after transformation is weakly stationary.

Step 2: Obtain an estimator T for the covariance matrix K , as shown in equation 

6.2.3.

Step 3: Perform the multivariate Karhunen-Loeve expansion using certain numer

ical scheme and decide the order p for the truncation. In this section, the numerical 

scheme we use is the trapezium integral method. The key equation to solve is the 

eigen-equation 6.2.6.

Step 4: Obtain , which is the truncated covariance matrix after averaging. The 

average procedure is defined in equation 6.2.8 and equation 6.2.9. is also the 

covariance matrix used for the reconstruction.

6.3 Sm oothing and prediction

For the noisy process, it can be decomposed into an infinite sum of relatively smooth 

functions using the Karhunen-Loeve expansion. If the expansion is truncated and only 

part of these smooth functions are used, we should be able to capture some charac

teristic, such as the patterns of the original series, while leaving out the substantial 

random noise. This reconstruction of the original series using the finite smooth func

tions is called “smoothing” in this section. In the multivariate setting, this smoothing 

process uses not only the knowledge of one series, it utilises the knowledge from the
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other correlated series as well.

The method for smoothing in this chapter is an extension of the method intro

duced in chapter 4 from a univariate setting to a multivariate setting. The smoother 

is the conditional expectation. Assume that there is a d-dimensional correlated 

series X (t) = ^Xi(£), X 2(t), ••• , X d(t)^j , t =  1 , 2 we try to calculate 

E (X (t)\Xa), where

X(2)
X s =

\X (n )J

Using the partition inverse equation and following the same procedure as that 

described in chapter 4, we can derive that

£ (X (t) |X .) =  kTK ~ lX. (6.3.1)

where

kndxd,

n.ndxnd

cov[X(«),X(l)], cov[X(t),X(2)],

/cov[X (l),X (l)] cov[X(l),X(2)] 

cov[X(2),X(l)] cov[X(2),X(2)]

, cov[X(t),X(n)])

cov[X(l), 

cov[X(2), X(n)]

ycov[X(n),X(l)] cov[X(n),X(2)] cov[X(n), X( n) ] J

When smoothing the data, we will use the truncated version of E (X (t) \X s), 

t = 1,2, • • • n to represent the original data point at time t. When using the original 

covariance function without truncation, £ l(X (t)|X s) =  X (t), t = 1,2, •••n.  Hence, 

under this case, we are only able to obtain the original value at time point t rather 

than the smoothing value. Using the truncated Karhunen-Loeve expansion, on the
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other hand, approximates the covariance function in equation 6.3.1, so that an es

timator of Z£(X(£)|XS) can be calculated, which can be regarded as the smoothing 

value. Nevertheless, using the truncated Karhunen-Loeve expansion only, one of the 

problems we meet in chapter 4 arises again. When n is big, such as 300 in this 

chapter, and n > p, the truncated version of the matrix K n is singular, hence not 

invertible. One way to solve this problem is to add an extra noise term a2 to the 

diagonal element. This can be regarded as a regularization. It is equivalent to treat

ing the original process as coming from the Gaussian regression model, which is the 

truncated Karhunen-Loeve expansion with added independent noise. However, since 

K n after the truncation has been adjusted to reflet stationarity and the analytical ex

pression of the covariance is unknown, the maximum likelihood approach in equation 

4.3.5 can not be simply applied, to find a2. The adjusted method used here to find 

a2 is to minimise the mean squared error instead. For the process, Xi(t), 1 < i < d, 

denote the value at time t after smoothing as X i(t), then we need to minimise the 

following.

M S E = h  X  -  *w]2 (6-3-2)
i = 1 t =  1

We continue with the example of T A R (  1) in the first section. In order to smooth 

the data, a suitable a2 needs to be sought after first to minimise the mean'squared 

error. Figure 6.7 lists a2 for four different orders, p = 1, p = 10, p = 20 and 

p =  40. Due to the limitation of the computing power, a2 is chosen to be the integer 

in between 1 and 40. When p is chosen to be low, such as 1 and 10. There exists 

some variation in the mean squared error. Moreover, under small p, since not much 

cumulative expected variance can be explained by the first p eigenvalues, a2 needs to 

be relatively big to recover the “energy” in the tail. For p = 1 and p = 10, a2 = 29
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Figure 6.7: The mean squared error for choosing a2 using equation 6.3.2 for TAR(l) 
using the truncated Karhunen-Loeve expansion when p is 1, 10, 20 and 40 respectively.

and cj2 =  38 respectively. When the order p increases, the plot for the mean squared 

error gets smoother. Not only the mean squared error exhibits less variation, a2 

dramatically decreases as well. For p = 20 and p = 40, cr2 has been reduced to 5 in 

both cases.

Figure 6.8 plots X \ (t), X 2 (t) and X%(t) after smoothing using the truncated orders 

p = 1, p = 10, p = 20 and p = 40 respectively. When only the first eigenfunction 

corresponding to the biggest eigenvalue is used in the smoothing, the shape of the
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0 100 200 300 0 100 200 300
t t

Figure 6.8: Smoothing for TAR(l) using the truncated Karhunen-Loeve expansion 
when p is 1, 10, 20 and 40 respectively. Blue line: smoothing for X \ (t); Red line: 
smoothing for A2(t); Green line: smoothing for X$(t).

series after smoothing is more or less the same as that of the first eigenfunction itself. 

It is too smooth to capture any variation in the original series. When p is increased 

to 10 and 20, more variation of the original series has been captured by the local 

minimum or local maximum appearing in the smoothing series. It is still too smooth 

though. Using the biggest p in this example, i.e. p = 40, some zigzag patterns exhibit 

in the series after smoothing. It is a reflection of the noise lying in the original series. 

In short the smoothing performance using the truncated Karhunen-Loeve expansion
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can be controlled by the truncation order p. The bigger the p , the more variation 

there is after smoothing.
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Figure 6.9: The original series of TA R(l) and its smoothing version using the trun
cated Karhunen-Loeve expansion when p = 40. Blue line: original series; Red line: 
smoothing series.

Figure 6.9 further plots the original series and the smoothing series under p = 

40 altogether. It can be seen that the smoothing series performs quite well. The 

smoothing series more or less follows the patterns of the original series without sudden 

change, which is caused by the big noise in the original series. If more noise is intended 

to be captured after smoothing, even higher order of p can be used.
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Another smoothing technique, which has been proved to be successful and similar 

to the smoothing using the Karhunen-Loeve expansion, is called singular-spectrum 

analysis (SSA). SSA has been widely used in the field of climate, meteorology and 

geophysics, see for example, Vautard et al. (1992), Allen and Smith (1996) and Yiou 

et al. (2000). The core step of SSA is also to find eigenvalues and eigenfunctions, but 

through singular value decomposition. Detail of SSA can refer to Golyandina et al. 

(2001).

For time series X (t), t = 1,2, •• • , n, smoothing discussed above is a process to 

reduce random fluctuations and identify patterns to its existing data t = 1,2, • , n

using certain smoother. In this chapter, the smoother is the conditional expectation,

i.e. E(X .(t)\X s), t — 1 ,2 , • • • , n. The conditional expectation can also be used to fore

cast the future value for the series at t > n +  1 using the same calculation procedure. 

This time the conditional expectation is called a predictor rather than a smoother.

The performance of the prediction using the truncated Karhunen-Loeve expansion 

is analysed through one-step ahead prediction using the above TA R{  1) process. The 

one-step ahead prediction is calculated at each point from t = 251 to t = 300, 

while the information which is conditional on is from the original series and kept in 

the window [t — 249, t — 1] with window length 249. Each time, when a prediction 

point moves from t to t +  1, the information window moves correspondingly from 

[t — 249, t — 1] to [t — 248, t]. Such setting allows us to compare the prediction using 

the truncated Karhunen-Loeve expansion with the original value from the series, a2 

used to adjust the covariance matrix is calculated using the data points from t = 1 

to t = 250 through minimising the mean squared error using equation 6.3.2.
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Figure 6.10 shows the original series, the prediction,using the truncated Karhunen- 

Loeve expansion when p = 40 and the prediction using the untruncated Karhunen- 

Loeve expansion (full covariance function without the truncation and without a2 

adjustment) from t = 251 to t = 300. It can be seen that using the truncated 

Karhunen-Loeve expansion when p = 40, the prediction does not strictly follow the 

original series, although it is performing quite well in capturing the trend of the series. 

The prediction under the current truncation version p = 40, in some sense, is still like 

smoothing. It mainly goes through the main pattern without considering too much 

on the sudden movement due to the big noise. However, when using the untruncated 

Karhunen-Loeve expansion, which is to use the true covariance function without any 

truncation, the one-step ahead prediction performs quite well. Its difference from the 

value in the original series is relatively small. This implies that better prediction can 

be conducted when p increases so that variability in the tail can be retrieved and be 

contributed to the calculation when dealing with the real data.

Table 6.3 further lists the value using the truncated Karhunen-Loeve expansion 

when p = 40, the prediction using the true covariance function and the real value of 

T A R (  1) for the first three points and the last three points. The error in the table

is defined as prediction-real value 
real value x 100%. It confirms again that the prediction 

performance using the truncation version is not very satisfactory. Although the error 

for the prediction using the untruncated true covariance function is still about 5% or 

even more, it generally performs much better than the truncation version. Hence, we 

can increase the order p for the better prediction if computing power allows.
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Figure 6.10: The original series of TA R {\) (blue), the prediction using the trun
cated Karhunen-Loeve expansion with p — 40 (red) and the prediction using the true 
covariance function (green) from t = 251 to t = 300.



268

t 251 252 253 298 299 300
X \ (real) -2.8461 -6.7093 1.579 -0.1876 0.617 -0.2296

X i  (untruncated) -2.5866 -6.5303 1.7899 -0.1141 0.581 -0.1305
Error 9.12% 2.67% 13.36% 39.18% 5.83% 43.16%

X i  (truncated) -2.4464 -3.7849 2.3913 -0.1746 0.0074 -0.1615
Error 14.04% 43.59% 51.44% 6.93% 98.80% 29.66%

X 2 (real) -1.4543 -3.7284 -0.8105 0.7089 1.4439 -0.5675
X 2 (untruncated) -1.3289 -3.934 -0.3366 0.4209 1.3277 -0.4675

Error 8.62% 5.51% 58.47% 40.63% 8.05% 17.62%
X 2 (truncated) -3.1262 -3.9827 1.3701 0.1948 0.6285 -0.0691

Error 114.96% 6.82% 269.04% 72.52% 56.47% 87.82%
X3 (real) 1.4771 -1.2949 1.3572 0.6538 0.0623 -0.7967

X 3 (untruncated) 1.3776 -1.5471 1.4226 0.514 0.4961 -0.2797
Error 6.74% 19.48% 4.82% 21.38% 696.31% 64.89%

X 3 (truncated) -1.599 -2.7318 1.9004 0.4005 0.881 -0.3161
Error 208.25% 110.97% 40.02% ■ 38.74% 1314.13% 60.32%

Table 6.3: The original series of TA R{  1), the prediction using the truncated
Karhunen-Loeve expansion with p = 40 and the prediction using the true covari
ance function (untruncated) for t = 251, 252, 253, 298, 299 and 300.



Chapter 7 

A ppendix

7.1 M ercer’s theorem

As is introduced in chapter 1, one of the key formulae of this thesis is the Fredholm in

tegral equation. Using the compact integral operator defined in remark 1.2.3, chapter 

1, the Fredholm integral equation is expressed as

K<j>{s) = J  K (s, t)4>(s)ds = A<j>(t) (7.1.1)

where T  is often a compact interval and K { s ,t), the kernel of a certain stochastic 

process X { t), is an L 2 kernel satisfying the condition,

J  J  K (s, t)2dsdt < 00 (7.1.2)

If X (t)  is a zero mean stochastic process, A(s, t) = E (X (s )X (t)) , where E  represents 

the expectation. According to theorem 1.1.6, chapter 1, when the L 2 kernel A(s, s ) < 

00, for all s G T , K ( . , .) also belongs to RKHS.

In general, there are infinite number of eigenvalues A», z G A. We assume that 

all the eigenvalues have been ordered so that Ai > A2 > A3 > ■ • •. Correspondingly,

269
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there are infinite number of eigenfunctions as well, <&(.), i G N. The eigenfunctions 

are orthogonal in the sense that f T (fi(s)(f)j(s)ds = Sij.

Mercer’s theorem (see, for example, Porter and Stirling (1990)) provides a way of 

expressing the kernel K (s ,t)  in terms of the eigenvalues and the eigenfunctions.

T h eo rem  7.1.1. Assume that K { s ,t) is a continuous, symmetric, positive definite 

L2 kernel of the stochastic process X (t) . K (s ,t)  is defined on T  x T ,  where T  is a 

compact interval. Then there exists a L2 orthogonal basis consisting of {&}, which 

are the eigenfunctions of 1C, together with the corresponding eigenvalues {A; > 0}. 

The kernel K (s ,t)  has the representation

converges uniformly with respect to both variables simultaneously.

Theorem 7.1.1 states the expansion of the kernel K { s ,t) in the univariate set

ting. It can be generalised to the multivariate setting, which is useful in chapter 5. 

Multivariate, as is described in chapter 5, refers to the multivariate state, and the 

univariate time.

Assume that we have a zero mean d-dimensional stochastic process X (t)T =  

(^Xi(t), X 2(t) , ••• , Xdit)^  defined on a compact interval T . The process X(£) 

is with finite energy, i.e. $^i=i E (X f(t))  < oo. The kernel K (t, s) of the process X (t)  

defined as K (t, s) = E (X (t)X ( t)T), is usually a multivariate L2 kernel satisfying

OO

(7.1.3)
i =  1

where the series converges absolutely and uniformly in the sense that

(7.1.4)

(7.1.5)
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Then the Fredholm integral equation on the kernel K(£, 5) and its relevant integral 

operator JCd can be expressed as

JCdf(s) = J r K(s, t) f(s )d s  =  Af ( t )  (7.1.6)

where A, the eigenvalue, is a scalar, while, f( t ) ,  the eigenfunction, is a d-dimensional

vector. The same as that in the univariate setting, there are infinite number of

eigenvalues A*, i e  N , with the infinite number of eigenfunctions fi(t), i £ N, in the 

multivariate L2 space. The orthogonality of the eigenfunctions in the multivariate L2 

space refers to

J  f m Tm  = k j  (7.1.T)

Generalised Mercer’s theorem (see, for example, Mahram et al. (2002) is an exten

sion of the Mercer’s theorem, which provides a way of expanding the kernel K (t, s).

T h eo rem  7.1.2. Assume that~K(t, s) is a continuous, positive definite, multivariate 

L2 kernel of the d-dimensional stochastic process X (t) with finite energy. K (t, s ) is 

defined o n T  x T , where T  is a compact interval. Then there exists a multivariate L2 

orthogonal basis consisting of { fi} , which are the eigenfunctions of JCd, together with 

the corresponding eigenvalues {Aj > 0}. The kernel K (s ,t) has the representation
OO

K (s ,t)  = Y ,K f i ( s ) f i ( t ) T (7.1.8)
i=l

and the converge is uniform in both s and t.

7.2 Change in the generalised m ean squared error

This section provides the detailed calculation for the difference of the generalised 

MSE between order p and the order p -(- 1. To make notation clear, the truncated
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covariance matrix/vector of order p is denoted as K p/k p, while the true covariance 

matrix/vector is denoted as Kf / k j .

Define

^  =  ( , r P )  A =  f t ” x ° )  Z P = K f - K p (7.2.1)
x&p+lj \  0 Ap+lJ

where is a p x n  matrix comprising of the first p eigenfunctions, and <fip+i is a n  x 1 

column vector comprising of the p +  1 eigenfunction. Then

Kp+ i  — ^ p + i-A -p + i^ p + i

— &p Ap$p -t- Ap+i^p+i^^j

— K p "h Ap4_i 0p_)_i 0p_)_ j

Using the inverse matrix formula, we obtain 

K & K f K ^  = K ; 'K f K ; '  -

2 J # ,  -  A ^ A / A ^

A

-  h +
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Therefore, denoting the generalised MSE of order p f T MSEp(y(t))dt, the difference 

in the generalised MSE between the order p +  1 and the order p is

J  MSEp(y(«))cft -  J  MSEv+1(y(t))dt 

=  trace[(2K &  -  K ^ K j K ^ ) ^ A^+1$ p+1)] -  t r a c e ^ t f ; 1 -  K , K*p%) ]

= trace[(2/Cp+I1 -  K ^ K j K ^ ) ^ Aj®p +  A2p+1<t>P+l^ +1)]

-trace[(2K ; 1 -  K ^ K j K ; ' ) ^ A ^ p)]

=  2A^+1( ^ +1^ p- V P+i) -  2 1 +

-  A l ^ K ? K f K ^ p+i

1 +  AP+1

(1 +  K - '0 p+i)2 ^ r + 'f^ r + iK p  l K f K p V„+i)
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1
(1 +  \ p+l<t>Tp+lK - ^ p+lY

[2A£+1̂ +1/gVp+i + 4Â+1(^+1ifp-Vp+i)2 + 2\ip+1(<t>l+1K ;^ p+1f  

-2Ap+1( ^ I/fp-1̂ $ J>̂ -1̂ +1) -  2 \ l+1( ^ +1K ; l<pp+1)(4>l+1K ; 1̂ A ^ pKp 1<pp+1) 

-2A2+1(^+1k-p-Vp+i)2 - 2\iv+1{<t>l+1K ;14>p+if

- K +M +i K 1K ,K - 1<Pp+1) - 2 X l +1( ^ +1K ^ p+1)(4>Tp+1K ; 1K f K ; 1<j>p+1) 

- K + i ( < f >p + i K P 1<i>p + i ) 2^ p + i K P l K f K P 1<t’p + ^  +  x p + ^ <t,p + i K p 1^ l A l i PK P l K / K P 1<t>p + i )  

+A2+i « +i ^ - V f,+i ) « +1^ 1̂ A ^ I,K ';1i f / /cp-V p +i) 

+2X3p+1(^ +1K ;1<j>p+1)(<i>l+1K ;lKfK ;l<i>p+1)

+2\*+1(4>J+1K - 1̂ p+ln ^ +1K ; 1KfK ; 14>p+i) + ^ +i(4>P+1K ; 1KfK ^ l A l i pKp1<i>p+1) 

+A2+1 (4>TP+lK ; :ld>P+i)(<f>Tp+1 K ^ 'K fK - '  ̂ tp k 2p% k ; 'Vp+i)

- K +M l +i K ; ^ P+l)\<l>Tp+1K ; 'K sK;'<t>p+l)
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1
(1  +  A P+1̂ +1K ~ ^ P+1)2
[2X2P+1̂ 1K ; 14>P+1 +  2\1+1(4,t+1k ; 14>p+i )2

-2X p+1(%+1K ; 1* l A 2p% K ; l<pp+1) - 2 X 2p+1(<fi+1K ; 1<t>p+1)(<fi+1K ; 1$ lA 2p<l>pK ; 1t P+1)

- A  1+1(4>tp+1k ; 1k sk ; 14>p+1) +  xp+1{<t,Tp+1K ^ TpA2p% K ; lK s K ; l4>pJrl)

+Xl+M l +1K ; 1<f>p+1) ( ^ +1K - l^ A 2p% K - iK f K - ^ p+1)

+Xp+i(<frJ+1K p 1K fK ~ 1$ pAp$ pK ~ 1(f>p+i)

+Xl+1(<t>l+\K-l<t>p+l){<^+lK ; lK }K ; l i l A l % K p i 4>p+l)

- X l ^ ^ K ^ K f K ^ ^ i ^ K ^ A l ^ K ^ , ) }
1

(1  +  Xp+1$ +1K p '<pp+1)2 

{Xp+,(<j>Tp+iK ; ^ TpA2p% K ; lY,pK ; l<t>^)

+ xp+1( ^ +1k ; 1e pk ; 1̂ a 2p̂ pk - 1^p+1)

+ K +i(<PP+lK ; % +1)(<g+lK ~ % K ; 1^ A 2p% K ; 1<t>p+1)

+  l ^ +i « +i ^ p- V P+i)

+ 2 A ^ + 1 ( ^ + 1 K p- V P + i ) 2 -  X l + M l + i K ^ ^ ^ l + i K ; ^ TpA2p%K;'<t>p+{))
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(1 +  A p+l^ +1K - ^ p+ly  
[ ^ ( ^ K ^ A ^ K ^ K ; 1 ^ )

+ 2 \ l + ^ + 1 ^ 14’P + M + 1 K ^ ^ p K ; % K - i 4>P + i )  

i)] +  [Ap+1( ^ +1iir“ Vp+i)

+2A^+1« +iifp- V p+i)2 -  Aj+1(0j+1Xp- 10p+i ) ( ^ +1ifp- 1$ ^ $ p^ - V P+i)]

For simplicity, we define,

^  =  ^ +17fp- 11'jA 2$ pifp- 1S p^ - V P+i 

c  =  < +1a:p- 1s pa: - V p+i

b =  <t>l+ 1 K - 1<t>p + l  

d  =  

S  =  2 A b - C d - C  +  b - b d  

A =  S2 — 16A62

Then the difference of the generalised MSE between the order p and the order 

p +  1 is,

J  MSEp(y(t))dt -  J  MSEp+i(y(t))dt

= (TTv ^ ^ [a- (262) + V i5+2"]
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