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Brownian motion models diffusion
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Brownian motion models diffusion
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Hawkes processes model contagion
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Hawkes processes model contagion
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Hawkes processes model contagion
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Markov chains
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In this course, we will learn to:

I simulate stochastic processes; and

I use stochastic process models to analyze data.

.
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Bayesian inference

We observe data y1, . . . , yN
iid∼ p(yn|θ) and assume θ ∼ p(θ).

Here,

I p(y|θ) =
∏N

n=1 p(yn|θ) is the likelihood,

I p(θ) is the prior,

and the goal of Bayesian inference is to obtain the posterior

p(θ|y) =
p(y|θ)p(θ)

p(y)
=

p(y|θ)p(θ)∫
Θ p(y|θ)p(θ)dθ

.
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Bayesian inference

We’re usually interested in computing another integral

Eθ|yf (θ) =

∫
Θ
f (θ)p(θ|y)dθ ,

so we do what statisticians have been doing forever. We collect
samples and rely on the law of large numbers. Suppose

θ1, . . . ,θS
iid∼ p(θ|y) (Eθ|y|θ| <∞) and f (·) a.s. continuous, then

I (WLLN)
∑S

s=1 f (θs)/S
P−→ Eθ|yf (θ)

I (SLLN)
∑S

s=1 f (θs)/S
a.s.−→ Eθ|yf (θ)

But where do we find our samples?
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Generating (pseudo) random variables

We want to sample Y ∼ F (y), where F (·) is the (monotonically
increasing) c.d.f.

Claim 1
Assume we can generate U ∼ U(0, 1) and compute F−1(·). Then

F−1(U) ∼ F (y) .

Proof.

Pr(F−1(U) < y) = Pr(U < F (y)) = F (y).

11



Exponential random variables

Ingredients for Y ∼ exp(λ):

1. p(Y |λ) = λ exp(−λY )

2. F (y |λ) = Pr(Y < y |λ) =
∫ y

0 λ exp(−λY ) = 1− exp(−λY )

3. F−1(u) = −λ−1 log(1− u)

Easy but extremely limited!
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Part 1. Monte Carlo
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Rejection sampling

We want to sample from generic p(θ) but only know
p∗(θ) ∝ p(θ). We can easily sample from q(θ) and know a
number M > 0 s.t. p∗(θ) < Mq(θ).

Algorithm for generating θ ∼ p(θ):

1. Draw θ∗ ∼ q(θ) and U ∼ U(0, 1)

2. θ ← θ∗ if U < p∗(θ)
Mq(θ)

The tighter the envelope Mq(θ), the better. Suppose
p(θ) = c∗p∗(θ). Then

Pr(Accept) =
1

c∗M
,

and expected number of iterations for one sample is c∗M.
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Validity of rejection sampling

15



Importance sampling

We wish to know Ef (θ) =
∫
f (θ)p(θ)dθ. We can evaluate

p∗(θ) ∝ p(θ) and can sample from q(θ) easily.

Algorithm for generating estimator Êf (θ):

1. Draw θ1, . . . ,θS ∼ q(θ)

2. Calculate wk = w(θk )∑S
s=1 w(θs)

, w(θs) = p∗(θs)
q(θs) for k = 1, . . . ,S .

3. Return
∑S

s=1 ws f (θs)
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Validity of importance sampling

By the LLN,

1

S

S∑
s=1

w(θs)f (θs)
a.s.−→

∫
w(θ)f (θ)q(θ)dθ and

1

S

S∑
s=1

w(θs)
a.s.−→

∫
w(θ)q(θ)dθ .

Therefore,

S∑
s=1

ws f (θs) =
1
S

∑S
s=1 w(θs)f (θs)

1
S

∑S
s=1 w(θs)

a.s.−→
∫
w(θ)f (θ)q(θ)dθ∫
w(θ)q(θ)dθ

=

∫
f (θ)p∗(θ)dθ∫
p∗(θ)dθ

=

∫
f (θ)p(θ)dθ = Ef (θ) .
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Variance of IS estimator

An estimator for the variance of Êf (θ) =
∑S

s=1 ws f (θs) is

V̂ar
(
Êf (θ)

)
≈

S∑
s=1

w2
s (f (θs)− Êf (θ))2 .

The variance can be large if even a single ws is large.

Question: is it better to use a t-distribution to sample a normal or
vice-versa?
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Part 2. Discrete time, discrete space,
time-homogeneous Markov chains
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The setup

Our Markov chain is a discrete time stochastic process
{θ(s), s ∈ N} satisfying

Pr(θ(s)|θ(s−1),θ(s−2), . . . ,θ(1),θ(0)) = Pr(θ(s)|θ(s−1)) .

Ingredients:

1. The state space S is a finite or countable set.

2. Initial distribution {p(0)
i }i∈S , satisfying

2.1 p
(0)
i = Pr(θ(0) = i)

2.2 p
(0)
i ≥ 0

2.3
∑

i∈S p
(0)
i = 1

3. Transition probabilities {qij}i ,j∈S
3.1 qij = Pr(θ(s) = j |θ(s−1) = i)
3.2 qij ≥ 0
3.3

∑
j∈S qij = 1
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Finite state space

When S = {1, . . . ,M}, then we can write state probabilities as
row-vectors:

p(s) =
(

Pr(θ(s) = 1),Pr(θ(s) = 2), . . . ,Pr(θ(s) = M)
)

Similarly, the transition probabilities qij form the matrix

Q =


q11 q12 . . . q1M

q21 q22 . . . q2M
...

...
. . .

...
qM1 qM2 . . . qMM


and

p(s) = p(s−1)Q = p(s−2)Q2 = · · · = p(0)Qs .
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Perron-Frobenius theorem

Let A be a square matrix, satisfying A ≥ 0 and Ak > 0 for some k.

1. There exists a real eigenvalue λPF > 0 with associated
positive left/right eigenvectors.

2. For any other eigenvalue λ of A, |λ| < |λPF |

3. λPF has multiplicity 1 and corresponds to 1× 1 Jordan block.
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Transition matrix

Assume that our transition matrix satisfies Qk > 0 for some k . We
know:

I Q ≥ 0

I If 1 = (1, . . . , 1), then Q1T = 1
T , so 1 is an eigenvalue with

right eigenvector 1T .

I But the eigenvalues of Q satisfy |λ| ≤ 1 (Gershgorin circle
theorem) .

Therefore λPF = 1 and there exists a positive left eigenvector π for
which

πQ = π and π1T = 1 (Why?)

We call such a π the stationary distribution.
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Stationary distributions
Because all other eigenvalues are bounded below 1, they die away,
and (remembering that Q is a sum of outer products)

lim
s−→∞

Qs = 1
Tπ =

 −π−...
−π−


On the other hand, even without the regularity assumption
(Qk > 0), any limiting distribution is a stationary distribution.
Take p an arbitrary limiting distribution, i.e.,

lim
s−→∞

Qs = 1
Tp or lim

s→∞
Qs

ik = pk

for any i . Then,

pj = lim
s→∞

Qs+1
ij = lim

s→∞

∑
k

Qs
ikQkj =

∑
k

lim
s→∞

Qs
ikQkj =

∑
k

pkQkj .
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Law of large numbers

Consider a Markov chain with finite state space and regular
transition matrix. If a function f (·) is bounded on S, then

1

S

S∑
s=0

f (θ(s))
a.s.−→ Eπf (θ) =

∑
i∈S

f (i)πi .

This result holds irrespective of initial state p(0).
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The punchline

I We construct Markov chains so that they have a specific
stationary distribution π (e.g., the posterior).

I By simulating the Markovian dynamics, we may obtain an
empirical estimate of Eπf (θ) .
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Detailed balance

Satisfying the detailed balance equations

πiQij = πjQji

is sufficient (assuming regularity, of course) for guaranteeing that
π is the invariant distribution of the Markov chain:∑

i

πiQij =
∑
i

πjQji = πj

∑
i

Qji = πj

We say:

I The Markov chain is reversible with respect to π or

I the Markov chain satisfies detailed balance with respect to π.
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Two concepts
A chain is irreducible if for any two states i and j , there exists a k
such that (Qk)ij > 0. Intuitively, this means the transition graph is
connected.

Andrieu et al. 2003

The period of a state i is the gcd of the times at which it is
possible to move from i to i . A Markov chain is aperiodic if the
period of all states is 1.
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Existence and uniqueness of stationary distribution

Finite state space:

Irreducibility + Aperiodicity ⇐⇒ Regular ⇐⇒ Ergodic

Countable state space:

Irreducibility + Aperiodicity + Positive recurrence ⇐⇒ Ergodic

A state is positive recurrent if the expected time to return is finite.
A chain is positive recurrent if all states are positive recurrent.
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Part 3. Discrete time, continuous space,
time-homogeneous Markov chains
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Analogies: the Markov property

The Markov property

Pr(θ(s)|θ(s−1), . . . ,θ(1),θ(0)) = Pr(θ(s)|θ(s−1))

now becomes

Pr(θ(s) ∈ A|θ(s−1), . . . ,θ(1),θ(0)) = Pr(θ(s) ∈ A|θ(s−1)) .
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Analogies: transition kernel

The previous fact that

(p(s))j = (p(0)Qs)j =
∑

i0,i1,...,is−2,is−1

p
(0)
i0

Qi0i1 . . .Qis−2is−1Qis−1j

becomes

Pr(θ(s) ∈ A) =

∫
A

ps(θ
(s))dθ(s) =∫

A

∫ ∞
−∞
· · ·

∫ ∞
−∞

q(θ(s)|θ(s−1)) . . . q(θ(1)|θ(0))p0(θ
(0)) dθ(0) . . . dθ(s−1)dθ(s) ,

i.e., we replace the transition matrix with the integral kernel∫
ps−1(θ(s−1))q(θ(s)|θ(s−1))dθ(s−1) = ps(θ(s)) .
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Analogies: stationary distributions

The definition of a stationary distribution

πQ = π

becomes

π(θ(s)) =

∫
q(θ(s)|θ(s−1))π(θ(s−1))dθ(s−1) ,

i.e., π(·) is an eigenfunction of the transition kernel with
eigenvalue 1.
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Analogies: detailed balance

Detailed balance equations

πiQij = πjQji

becomes (a.s.)

π(θ)q(θ∗|θ) = π(θ∗)q(θ|θ∗) .

If the chain satisfies detailed balance with respect to π(·), then∫
π(θ∗)q(θ|θ∗)dθ∗ =

∫
π(θ)q(θ∗|θ)dθ∗ = π(θ) ,

i.e., π(·) is a stationary distribution of the Markov chain.
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Useful concepts

I An MC is p-irreducible if there is a positive probability of
reaching any set A for which

∫
A p(θ)dθ > 0, regardless of

initial state.

I A chain is periodic if it returns to any set A at regular
intervals (gcd of return times > 1). Otherwise it is aperiodic.

A sufficient condition for aperiodicity and p-irreducibility is that∫
A
q(θ|θ(0))dθ > 0 , ∀θ(0) if

∫
A
p(θ)dθ > 0 .
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Limiting distribution

If a chain has a stationary distribution π(·) and is π-irreducible and
aperiodic, then

1. π(·) is the unique stationary distribution, and

2. lims→∞ Pr(θ(s) ∈ A|θ(0) = θ∗) =
∫
A π(θ)dθ,

where we have asserted that the initial state has some value with
probability 1.
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Existence and uniqueness of stationary distribution

Finite state space:

Irreducibility + Aperiodicity ⇐⇒ Regular ⇐⇒ Ergodic

Countable state space:

Irreducibility + Aperiodicity + Positive recurrence ⇐⇒ Ergodic

Continuous state space:

π-Irreducibility + Aperiodicity + Harris recurrence ⇐⇒ Ergodic

A state is Harris recurrent if for any starting value and any set A
with

∫
A π(θ)dθ > 0, the probability A is returned to infinitely often

is 1.
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Consequences of ergodicity

For an ergodic chain with stationary distribution π(·),

1. lims→∞ Pr(θ(s) ∈ A) =
∫
A π(θ)dθ, and

2. 1
S

∑S
s=1 f (θ(s))

a.s.−→ Eπf (θ),,

provided the expectation is finite.
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In practice

Three things we can actually check:

1. Sufficient condition for π(·) being a stationary distribution is
reversibility / detailed balance:

π(θ)q(θ∗|θ) = π(θ∗)q(θ|θ∗) .

2. Sufficient condition for aperiodicity and π-irreducibility is that∫
A
q(θ|θ(0))dθ > 0 , ∀θ(0) if

∫
A
π(θ)dθ > 0 .

3. Sufficient condition for Harris recurrence is π-irreducibility and
absolute continuity of q(·|θ∗) wrt π(·):∫

A
π(θ)dθ = 0 =⇒

∫
A
q(θ|θ∗)dθ .
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Part 4. Classical MCMC
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Time for a 180◦

So far: S + q(·, ·) =⇒ π(·)

Markov chain Monte Carlo: S + π(·) =⇒ q(·, ·)

41



In practice

Three things we can actually check:

1. Sufficient condition for π(·) being a stationary distribution is
reversibility / detailed balance:

π(θ)q(θ∗|θ) = π(θ∗)q(θ|θ∗) .

2. Sufficient condition for aperiodicity and π-irreducibility is that∫
A
q(θ|θ(0))dθ > 0 , ∀θ(0) if

∫
A
π(θ)dθ > 0 .

3. Sufficient condition for Harris recurrence is π-irreducibility and
absolute continuity of q(·|θ∗) wrt π(·):∫

A
π(θ)dθ = 0 =⇒

∫
A
q(θ|θ∗)dθ .
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Markov chain Monte Carlo
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Markov chain Monte Carlo
Example 4: Multivariate normal model

The contour plot shows the conjugate posterior distribution

μ1

μ
2

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

The first few samples from the posterior distribution of µ = (µ1µ2), using a bivariate
normal proposal. The contour plot shows the closed form of the posterior distribution.
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The contour plot shows the conjugate posterior distribution
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Posterior samples for µ = (µ1µ2), the mean of the bivariate normal model.

Shahbaba (UCI) Computational Statistics 49 / 70
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The Metropolis algorithm
Our target stationary distribution is π(θ) = p(θ|y) ∝ p∗(θ|y).

Inputs:

I p∗(θ|y)

I a proposal distribution h(θ∗|θ) such that h(θ|θ∗) = h(θ∗|θ)

I θ(0) (chosen or randomly generated however you want)

For s = 1, . . . ,S ,

1. Generate θ∗ ∼ h(θ|θ(s−1)) and U ∼ Uni(0, 1)

2. Compute

a← 1 ∧ p∗(θ∗|y)

p∗(θ(s−1)|y)
= 1 ∧ π(θ∗)

π(θ(s−1))

3. IF U < a: θ(s) ← θ∗;
ELSE: θ(s) ← θ(s−1)
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The Metropolis algorithm

The Metropolis algorithm generates Markov chains that are
reversible wrt the target distribution π(θ):

π(θ)q(θ′|θ) = π(θ)h(θ′|θ)a(θ′,θ)

= π(θ)h(θ′|θ)

(
1 ∧ π(θ′)

π(θ)

)
= h(θ′|θ)

(
π(θ) ∧ π(θ′)

)
= h(θ|θ′)

(
π(θ′) ∧ π(θ)

)
= π(θ′)h(θ|θ′)

(
1 ∧ π(θ)

π(θ′)

)
= π(θ′)h(θ|θ′)a(θ,θ′)

= π(θ′)q(θ|θ′) .
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The Metropolis algorithm

For unbounded targets (why?), the classic symmetric proposal is a
Gaussian centered at the current state:

θ∗ ∼ h(θ∗|θ(s−1)) ≡ ND(θ∗|θ(s−1),Σ) .
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The Metropolis algorithm

For unbounded targets (why?), the classic symmetric proposal is a
Gaussian centered at the current state:

θ∗ ∼ h(θ∗|θ(s−1)) ≡ ND(θ∗|θ(s−1),Σ) .

48



Metropolis-Hastings
Our target stationary distribution is π(θ) = p(θ|y) ∝ p∗(θ|y).

Inputs:

I p∗(θ|y)

I a not-necessarily-symmetric proposal distribution h(θ∗|θ)

I θ(0) (chosen or randomly generated however you want)

For s = 1, . . . ,S ,

1. Generate θ∗ ∼ h(θ|θ(s−1)) and U ∼ Uni(0, 1)

2. Compute

a← 1 ∧ p∗(θ∗|y) h(θ|θ∗)
p∗(θ(s−1)|y)h(θ∗|θ)

= 1 ∧ π(θ∗)h(θ|θ∗)
π(θ(s−1))h(θ∗|θ)

3. IF U < a: θ(s) ← θ∗;
ELSE: θ(s) ← θ(s−1)
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Decomposing the parameter space

I Sometimes it is useful/easier to decompose the parameter
space into several components.

I We want to use MH to sample from π(θ) = π(θ1, . . . , θD).

I Keep all but one component θd fixed and use a univariate
proposal to update θd .
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Decomposing the parameter space

To update the dth component within global MCMC iteration s

with state (θ
(s)
1 , . . . , θ

(s)
d−1, θ

(s−1)
d , . . . , θ

(s−1)
D ).

1. Propose θ∗d ∼ hd(θ∗d |θ
(s)
1 , . . . , θ

(s)
d−1, θ

(s−1)
d , . . . , θ

(s−1)
D )

≡ hd(θ∗|θ)

2. Accept with probability

1 ∧
π(θ

(s)
1 , . . . , θ

(s)
d−1, θ

∗
d , . . . , θ

(s−1)
D )hd(θ|θ∗)

π(θ
(s)
1 , . . . , θ

(s)
d−1, θ

(s−1)
d , . . . , θ

(s−1)
D )hd(θ∗|θ)
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Decomposing the parameter space

I We can decompose into blocks of components.

I We can use a random scan instead of sequential updates.

I If π(θ) invariant to h1, h2, then π(θ) invariant to h1 ◦ h2.

Example 4: Multivariate normal model

In the example of multivariate normal with known covariance, we can sample
µ1 and µ2 one at a time.

The following figure shows the first few steps of sampling from a bivariate
normal.

The contour plot shows the conjugate posterior distribution
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The first few samples from the posterior distribution of µ = (µ1, µ2), using a univariate
normal proposal distribution sequentially.

Shahbaba (UCI) Computational Statistics 54 / 70
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Neat trick!

Suppose we divide θ into two components: θ = (θ1,θ2) and that

h1(θ1|θ2) = π(θ1|θ2) = π(θ)/π(θ2) = π(θ) /

∫
π(θ)dθ1

and analogous for h2(θ2|θ1). Then the MH acceptance criterion is

θ
(s)
1

a = 1 ∧
π(θ∗1,θ

(s−1)
2 )

π(θ
(s−1)
1 ,θ

(s−1)
2 )

×
π(θ

(s−1)
1 |θ(s−1)

2 )

π(θ∗1|θ
(s−1)
2 )

= 1 ∧
π(θ∗1,θ

(s−1)
2 )

π(θ
(s−1)
1 ,θ

(s−1)
2 )

×
π(θ

(s−1)
1 ,θ

(s−1)
2 )

π(θ∗1,θ
(s−1)
2 )

×
π(θ

(s−1)
2 )

π(θ
(s−1)
2 )

= 1

and similar for θ
(s)
2 . Thus, we can avoid wasted compute time on

rejected proposals.
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Neat trick!

But when can we use it?
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Part 5. Introduction (?) to Bayesian inference

55



Bayesian inference

We observe data y1, . . . , yN
iid∼ p(yn|θ) and assume θ ∼ p(θ).

Here,

I p(y|θ) =
∏N

n=1 p(yn|θ) is the likelihood,

I p(θ) is the prior,

and the goal of Bayesian inference is to obtain the posterior

p(θ|y) =
p(y|θ)p(θ)

p(y)
=

p(y|θ)p(θ)∫
Θ p(y|θ)p(θ)dθ

.
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Conjugate priors

I Conjugacy refers to the situation when the prior p(θ) and
posterior p(θ|y) belong to the same distribution (albeit with
“updated” parameters).

I When one combines a conjugate prior with a specific
likelihood, one may obtain the posterior in closed form, no
computations necessary!

I Unfortunately, conjugacy only works for a limited class of
simple models.
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Exponential family distributions

I Exponential family distributions include the normal, beta,
Bernoulli, gamma and Poisson distributions.

I If y follows an exponential family distribution, then

p(y |θ) = h(y)g(θ) exp
(
φ(θ)T s(y)

)
.

I The joint distribution for independent y = (y1, . . . , yN) is

p(y|θ) =

(
N∏

n=1

h(yn)

)
gN(θ) exp

(
φ(θ)T

N∑
n=1

s(yn)

)
.

I φ(θ) is the natural parameter and t(y) =
∑

n s(yn) is the
sufficient statistic.
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Conjugate priors

Again, our likelihood is

p(y|θ) ∝ gN(θ) exp
(
φ(θ)T t(y)

)
,

and we specify θ follows an exponential family distribution with
prior

p(θ) ∝ g(θ)η exp
(
φ(θ)Tν

)
.

It follows that

p(θ|y) ∝ gN+η(θ) exp
(
φ(θ)T (t(y) + ν)

)
.
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Beta-binomial model

p(y |θ,N) ∝ θy (1− θ)N−y ∝ (1− θ)N exp

(
y log

(
θ

1− θ

))

=⇒ g(θ) = 1− θ and φ(θ) = log

(
θ

1− θ

)

=⇒ p(θ) ∝ (1− θ)η exp

(
ν log

(
θ

1− θ

))
∝ (1− θ)η−νθν

=⇒ p(θ) ≡ beta(α = ν + 1, β = η − ν + 1)

=⇒ p(θ|y) ∝ (1− θ)(η−ν+N−y)θν+y

=⇒ p(θ|y) ≡ beta(α + y , β + N − y)

=⇒ E(θ|y) = (α + y)/(α + β + N)
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Univariate normal, known variance

p(y|θ, σ2) ∝ exp

(
− 1

2σ2

∑
n

(yn − θ)2

)
∝ exp

(
−Nθ2

2σ2
+

θ

σ2

∑
n

yn

)

=⇒ p(θ) ∝ exp

(
− θ2

2τ2
0

+
µ0θ

τ2
0

)
∝ exp

(
− 1

2τ2
0

(θ − µ0)2

)

=⇒ p(θ|y, σ2) ∝ exp

(
− θ2

2τ2
0

+
µ0θ

τ2
0

)
exp

(
−Nθ2

2σ2
+

θ

σ2

∑
n

yn

)

∝ exp

(
−1

2

(
1

τ2
0

+
N

σ2

)
θ2 +

(
µ0

τ2
0

+

∑
n yn
σ2

)
θ

)
≡ N

((
µ0

τ2
0

+

∑
n yn
σ2

)(
1

τ2
0

+
N

σ2

)−1

,

(
1

τ2
0

+
N

σ2

)−1
)
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Univariate normal, known mean

p(y|θ, σ2) ∝ (σ2)−n/2 exp

(
− 1

2σ2

∑
n

(yn − θ)2

)

=⇒ p(σ2) ∝ (σ2)−α−1 exp

(
− β

σ2

)
≡ Γ−1 (α, β)

=⇒ p(σ2|y, θ) ∝ (σ2)−α−N/2−1 exp

(
− β

σ2
+

∑
n(yn − θ)2

2σ2

)
≡ Γ−1

(
α +

N

2
, β +

∑
n(yn − θ)2

2

)
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Limitations to conjugacy

I We rarely know the variance but not the mean (and
vice-versa).

I We don’t have the joint posterior for both mean and variance
in closed form.

I All we know is the conditional posteriors for either parameter.

I It turns out, this kind of situation is rather common for
Bayesian hierarchical models that arise out of pieced together
exponential family distributions.
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Part 6. Classical MCMC (again)
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Neat trick!

Suppose we divide θ into two components: θ = (θ1,θ2) and that

h1(θ1|θ2) = π(θ1|θ2) = π(θ)/π(θ2) = π(θ) /

∫
π(θ)dθ1

and analogous for h2(θ2|θ1). Then the MH acceptance criterion is

θ
(s)
1

a = 1 ∧
π(θ∗1,θ

(s−1)
2 )

π(θ
(s−1)
1 ,θ

(s−1)
2 )

×
π(θ

(s−1)
1 |θ(s−1)

2 )

π(θ∗1|θ
(s−1)
2 )

= 1 ∧
π(θ∗1,θ

(s−1)
2 )

π(θ
(s−1)
1 ,θ

(s−1)
2 )

×
π(θ

(s−1)
1 ,θ

(s−1)
2 )

π(θ∗1,θ
(s−1)
2 )

×
π(θ

(s−1)
2 )

π(θ
(s−1)
2 )

= 1

and similar for θ
(s)
2 . Thus, we can avoid wasted compute time on

rejected proposals.
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Neat trick!

But when can we use it?
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A Gibbs sampler

We assume our data y = (y1, . . . , yN)
iid∼ N(θ, σ2) and priors

θ ∼ N(µ0, τ
2
0 ) and σ2 ∼ Γ−1(α, β) .

We wish to generate samples from p(θ, σ2|y). Initialize θ(0) and
σ(0). For s = 1, . . . ,S ,

1. Draw from p(θ|y, σ2) with σ2 = σ2(s−1):

θ(s) ∼ N

((
µ0

τ2
0

+

∑
n yn
σ2

)(
1

τ2
0

+
N

σ2

)−1

,

(
1

τ2
0

+
N

σ2

)−1
)
.

2. Draw from p(σ2|y, θ) with θ = θ(s):

σ2(s) ∼ Γ−1

(
α +

N

2
, β +

∑
n(yn − θ)2

2

)
No need for the accept/reject step!
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Another Gibbs sampler

We assume our data yn
ind∼ N(θn, σ

2), n = 1, . . . ,N,

θn
iid∼ N(θ0, τ

2
0 ) and θ0 ∼ N(0, 10) .

We wish to sample from p(θ0, θ1, . . . , θN |y, σ2, τ2). After
initialization, for s = 1, . . . ,S :

1. Draw from p(θ0|y, τ2, θ
(s−1)
1 , . . . , θ

(s−1)
N ):

θ
(s)
0 ∼ N

((∑
n θ

(s−1)
n

τ2
0

)(
N

τ2
0

+
1

10

)−1

,

(
N

τ2
0

+
1

10

)−1
)

2. For n = 1, . . . ,N, draw from p(θn|y, σ2, τ2, θ
(s)
0 ):

θ
(s)
1 ∼ N

((
θ

(s)
0

τ2
0

+
yn
σ2

)(
1

τ2
0

+
1

σ2

)−1

,

(
1

τ2
0

+
1

σ2

)−1
)
.
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Pros and cons of Gibbs sampling

Pros:

I No wasted compute time on rejected proposals.
I For big data, factorization helps

1. data storage
2. parallel computing.

Cons:

I You’re only as strong as your weakest link. (But isn’t this
always true?)

I Coding by hand can be time intensive. (But isn’t there
software for that?)

I Conditional posteriors aren’t always known. (But isn’t there
Metropolis-within-Gibbs for that?)
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