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Brownian motion

Theorem 1
There exists a probability distribution over the set of continuous
functions B : R — R satisfying the following conditions:

(i) B(0)=0
(ii) forall0 <s < t, B(t) — B(s) ~ N(0,t —s).
(i) B(t;) — B(si) L B(tj) — B(sj) fors; < t; < 's; < t;.

Item (ii) is stationarity, where t — s is the variance. Item (iii) is
independence over non-overlapping increments.
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Strong Markov property

A random variable T € [0, 00] is a stopping time if we can decide
whether {7 < t} just by knowing the path of B(t) up to time t.
Example: 7 might be the first time an event of interest happens.

Theorem 2

For every a.s. finite stopping time T, the process

{B(T +t) — B(7) : t > 0} is independent of the history of B(t) up
to time T.



Reflection principle

Theorem 3

If T is a stopping time and {B(t) : t > 0} a standard Brownian
motion, then the process {B*(t) : t > 0} called “Brownian motion
reflected at 7" and defined by

B*(t) = B(t)L{e<ry + (2B(7) — B(t)) 1>y

is also a standard Brownian motion.
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The distribution of the maximum
Let M(t) = maxo<s<t B(s). M(t) is well-defined because B is
continuous and [0, t] is compact.

Proposition 1
The following holds for a > 0:

Pr(M(t) > a) = 2Pr(B(t) > a) = 2 — 20 <\2) .
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The distribution of the maximum

Proposition 1
The following holds for a > 0:

Pr(M(t) > a) = 2P{B(t) > a) = 2 — 20 <\2) .

Proof.

Define 7, = ming{s : B(s) = a} and let {B*(t): t > 0} be a
Brownian motion reflected at 7,. Then {M(t) > a} is the disjoint
union of events {B(t) > a} and

{M(t) > a, B(t) < a} = {B*(t) > a} .



Brownian motion is not differentiable

Proposition 2
For t > 0, the Brownian motion is a.s. not differentiable at t.

Proof.

Assume Brownian motion B is differentiable at a fixed ty. Then
there exists constants A and ¢g s.t. for all 0 < € < ¢,

B(t) — B(tp) < Ae holds for all 0 < t — tp < e.

Denote this event E. 4 and let E4 = NE. o . But note that

Pr(Ec,a) = Pr(B(t) — B(ty) < Ae, forall0 < t — tg <€)
=1—Pr(M(e) > Ae) =1 — 2Pr(B(e) > Ae)
Ae

:1—2(1—<b<ﬁ>):1—2(1—d>(Aﬁ))

Taking the RHS to 0 takes the LHS to 0, and thus P(Ex) =0. O



Quadratic variation: (dB)? = dt

Theorem 4
For a partition N = {ty, t1, ..., tj} of the interval [0, T], let
[M| = max;(ti;1 — ti). A Brownian motion satisfies the following
equation with probability 1:
lim > (B(tiy1) — B(t:))* = T.

[nj—o

Proof.

For simplicity, assume gaps tj11 — t; are uniform. Then t; = iT /n
fori=0,...,n—1and B(tj+1) — B(t;) ~ N(0, T/n). Then by
the LLN, for n large,

n—1

S (Blta) — B() ~ T/n.

i=0



Quadratic variation: (dB)? = dt

This result suggests that Brownian motion moves around a lot. For
reference, assume f is differentiable. Then,

> (F(tipa) — F(1:))? < Z tiyr — )2 (si)?
< max f'(s Z(t,+1 —t)

SGOT]

< max f’ -max(tiy1 — ) T.
Jmax (s)? m,.X( +1— 1)

Sending the max;(tj+1 — t;) to 0 sends the LHS to 0.
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Brownian motion with drift

We can always add a drift term and consider X(t) = ut + B(t).
The drift term overpowers diffusion in a certain sense: for any
e >0, as t gets large, X(t) is always within the lines y = (u % €)t.
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[to's lemma

We know 9Bt does not exist: B(t) is nowhere differentiable with
probability 1. But we define the infinitesimal df for a smooth
function f(B(t))? We know we cannot simply apply the chain rule:

dB
df = ( f(By)—— ) dt.

But maybe we can do this anyway by using dB; directly instead?
Then the previous equation becomes

df == f/(Bt)dBt .

But this only works when Ax - f/(x) dominates all other terms in
the Taylor expansion

(Ax)

f(x + Ax) — f(x) = Ax - f'(x) + 5

f”(X) 4.
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[to's lemma

Let's plug AB; into the Taylor expansion:

(AB:)?
2

Af = AB, - f'(By) + F(By) +

But we know that E(AB;)? = At (quadratic variation), so

Af = DB, - /(B) + Ef”(Bt)

This gives us the simplest statement of Ito’s lemma:

1
df (Be) = £'(Be)dBe + 51" (Br)dt
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[to's lemma

More generally, for a smooth function f(t, x), we have

of of
df = a—dt + ad

In Ito calculus, this becomes:

Of o OF o 10°F

of 182 81‘
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[to's lemma

Theorem 5
Let f(t,x) be a smooth function, and let X; be a stochastic
process satisfying dX; = uydt + o:dB;. Then

of of 19°f
df (8, X,) = Godt + 5-dXe + 5 o5 (dX0)?
of of 1 282f of
_<8t+ ta +2ta 2>dt+at8 dBt
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[to calculus

Define integration as the inverse of differentiation, i.e.,

F(t, Bt)—/f(t, Bt)dBt—l—/g(t, B:)dt

=
dF(t,B:) = f(t, B:)dB: + g(t, Bt)dt .
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Fundamental theorem of calculus

If f(x) = x?/2, then
1

This means that

T T 1 T
B2 /2 :/ BtdBt+/ 5t :/ BidB: + T/2
0 0 0

and thus

;
/ B:dB; = B3/2 - T/2.
0
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Solving an SDE

If f(t,x) = exp(ut+ ox), then
(. Be) = -+ 50°)F(t, Be)dt + of(t, B)dB,.
Question: which stochastic process X:(t, B;) satisfies the SDE
dX; = o X;dB; ?
Solution: set u = —0?/2 to get

X(t, By) = exp (—0?t/2 + 0B) .
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[to calculus

Theorem 6
Let A(t) be a nonrandon function of time. Suppose the stochastic
process I(t) satisfies

t
di(t) = AdBs e, I(t):/ AydB,
0

where 1(0) = 0. Then for each t > 0, I(t) is normally distributed.
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[to calculus

Let X; be a stochastic process. A process A; is an adapted process
w.r.t. X; if for all t > 0, the random variable A; depends only on
Xs for s < t.

» The process A; = X; is an adapted process.

» The process A; = min(X;, ¢) for ¢ constant is an adapted
process.

» The process A; = maxo<:<7 X; is not an adapted process.

» If 7 is a stopping time, then X is an adapted process.

Recall that a stochastic process X; is a martingale if E|X;| < co
and E(X¢|{X;,7 <s})= X, for all s < t.
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[to calculus

Theorem 7
For all adapted processes g(t, B;) satisfying the L bound

t
// g°(s, Bs)ds dBs < oo
0

the integral

t
/ g(s, Bs)dBs
0

is a martingale.
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[to calculus

The process B; itself is an adapted process. Recall that

t

1

/ BsdBs = 5(Bt2 —t) and EB}=t.
0

Hence

t
E(/ Bsst> =0.
0

More generally,

t2 1 1
E </ B.dB: ]—'t1> —E (2(332 — 1) ’J—'h) — 5(/331 -
[51
1 1 tr 1
=5t —t)+ 385 — 5 — (8 ~

The theorem is confirmed for g(s, Bs) = Bs.
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lto isometry

Theorem 8
For all adapted processes A; w.r.t. B;

E((/OtAsst>2> = E(/OtA2d5> :

Let A(t) =1. Then

E <</OtAsst>2> = E(B?)
E (/OtAgds) =t.

and

S

t,
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Stochastic differential equations

We wish to solve equations of the form

dX(t) = p(t, X(t))dt + o(t, X(t))dB(t).

A function X satisfies this equation if

T T
XT:/o ,u(t,Xt)dt+/0 o(t, X¢)dB(t).
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Stochastic differential equations

Theorem 9 (Existence and uniqueness)
If the coefficients of the SDE

dX(t) = p(t, X(t))dt + o(t, X(t))dB(t)
X(0)=x, 0<t<T

satisfy the conditions
lu(t, x) = u(t,y)P +lo(t, x) = o(t,y)* < Klx — y[?
and
(i, )P + o (X)) < K1+ |x),

then there is an adapted process solution X(t) that satisfies the L> bound. If X
and Y are both continuous solutions satisfying the L? bound, then

Pr(X(t) = Y(t), Yt € [0, T]) = 1.
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Solving dX(t) = puX(t)dt+oX(t)dB(t), X(0)=xp >0
Step 1: assume X(t) = f(t, B(t)), then

of 1 821‘) of
dt +

dX(t) = (E+§ﬁ 5B,

Step 2: equate

of  10°f of
,U,X(t)— <a+§ﬁ> and O'X(t)—a

Step 3: solve the second equation with
f(t,x) = xoexp (ox + g(t)) .

Step 4: plug this into first equation

2
uf = g'(t)f + %f toget g'(t)=p—0°/2.

Step 5: recognize that

f(t,x) = xoexp(ox + (u—02/2)t) or X(t) = xoexp(cB(t) + (u—0°/2)t).
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Solving dX(t) = —aX(t)dt +odB(t), X(0)=xp

Try the test function

X(t) = a(t) <Xo + /Ot b(s)dB(s)) , a(0)=1, a(t)>0,Vt.

Differentiating gives

X () = 4(t)d (xo +/ b(s)dB(s > a(t)b(t)dB(¢)
a((t)’ (£)dt + a(t)b(t)dB(t)
Matching this to the original SDE gives
o= j((tt)) o= a(t)b(t).

Thus a(t) = exp(—at), b(t) = o exp(at) and

X(t) = xoexp(—at) + o | exp(a(s — t))dB(s).
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Euler's method for ODEs

Problem: obtain u(1) for ODE «/(x) = 5u(x) + 2 with u(0) = 0.
Solution: select small number h > 0 and use Taylor approximation
at each step for times t = 0,1h,2h,...,(1/h—1)/h, 1.

u(t+ h) =~ u(t)+h-d'(t) = u(t) + h- (5u(x) +2).
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Euler-Maruyama

Problem: obtain distribution of X (1) for OU equation
dX(t) = —aX(t)dt + odB(t) with X(0) = 0.
Solution: select small number h > 0 and use Taylor approximation

at each step for times t = 0,1h,2h,...,(1/h—1)/h,1.

X(t+ h) = X(t) + dX(t) = X(t) — haX(t) + oVhZeip.

alpha=10
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Time
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Langevin Monte Carlo

We are interested in generating samples from a target distribution
7(0) o exp(—U(0)),
so we simulate the diffusion that solves the SDE

do(t) = —VU(6(t))dt + V2dB(t)
= Vlog m(6(t))dt + v2dB(t)

using the Euler-Maruyama method, e.g.,

O(t + h) = 6(t) + hV log 7(0(t)) + V2hZeyp .
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Langevin Monte Carlo

0.1, time=10k

100k steps: h:

0.1, time=10

100 steps: h
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Justifying LMC

The stochastic process 6(t) that satisfies
do(t) = Vlog (6(t))dt + V2dB(t)

leaves 7(6) invariant. To see this, we use a PDE that describes the
evolution of the probability density function of X(t) with time for
the general Ito diffusion

dX(t) = p(t, X(t))dt + o(t, X(t))dB(t).

In 1D, this PDE is the Fokker-Plank equation:

0 0 102 ,

ap(t,x) - _a (,u(t,x)p(t,x)) + Eﬁ (U (t,X)p(t,X)) .
For us, this becomes

0 g (0 2
5e(t.0) = = (S 10gm(Op(2.0) ) + p(0).
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Justifying LMC

For us, this becomes:

0 g (0 H?
5ep(e.0) = = (S 1ogm(O(2.0) ) + p(.0).

Want to show: if p(t,8) = m(0), then %p(t, 0) = 0. Plug it in:
32

5pl6.0) =~ (0B (O)r(0)) + ()

- ;’0 (‘aae”(e) + 5}49)) -
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