Stochastic Processes: Lecture 2

Andrew J. Holbrook

UCLA Biostatistics 270
Spring 2022

Brownian motion

Theorem 1
There exists a probability distribution over the set of continuous functions $B: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the following conditions:
(i) $B(0)=0$
(ii) for all $0 \leq s<t, B(t)-B(s) \sim N(0, t-s)$.
(iii) $B\left(t_{i}\right)-B\left(s_{i}\right) \perp B\left(t_{j}\right)-B\left(s_{j}\right)$ for $s_{i}<t_{i} \leq s_{j}<t_{j}$.

Item (ii) is stationarity, where $t-s$ is the variance. Item (iii) is independence over non-overlapping increments.

A sample Brownian path

Strong Markov property

A random variable $\tau \in[0, \infty]$ is a stopping time if we can decide whether $\{\tau<t\}$ just by knowing the path of $B(t)$ up to time t. Example: τ might be the first time an event of interest happens.

Theorem 2
For every a.s. finite stopping time τ, the process $\{B(\tau+t)-B(\tau): t \geq 0\}$ is independent of the history of $B(t)$ up to time τ.

Reflection principle

Theorem 3
If τ is a stopping time and $\{B(t): t \geq 0\}$ a standard Brownian motion, then the process $\left\{B^{*}(t): t \geq 0\right\}$ called "Brownian motion reflected at $\tau^{\prime \prime}$ and defined by

$$
B^{*}(t)=B(t) \mathbb{1}_{\{t \leq \tau\}}+(2 B(\tau)-B(t)) \mathbb{1}_{\{t>\tau\}}
$$

is also a standard Brownian motion.

The distribution of the maximum

Let $M(t)=\max _{0 \leq s \leq t} B(s) . M(t)$ is well-defined because B is continuous and $[0, t]$ is compact.

Proposition 1
The following holds for $a>0$:

$$
\operatorname{Pr}(M(t)>a)=2 \operatorname{Pr}(B(t)>a)=2-2 \Phi\left(\frac{a}{\sqrt{t}}\right) .
$$

The distribution of the maximum

Proposition 1

The following holds for $a>0$:

$$
\operatorname{Pr}(M(t)>a)=2 \operatorname{Pr}(B(t)>a)=2-2 \Phi\left(\frac{a}{\sqrt{t}}\right) .
$$

Proof.
Define $\tau_{a}=\min _{s}\{s: B(s)=a\}$ and let $\left\{B^{*}(t): t \geq 0\right\}$ be a Brownian motion reflected at τ_{a}. Then $\{M(t)>a\}$ is the disjoint union of events $\{B(t)>a\}$ and

$$
\{M(t)>a, B(t) \leq a\}=\left\{B^{*}(t) \geq a\right\}
$$

Brownian motion is not differentiable

Proposition 2
For $t \geq 0$, the Brownian motion is a.s. not differentiable at t.
Proof.
Assume Brownian motion B is differentiable at a fixed t_{0}. Then there exists constants A and ϵ_{0} s.t. for all $0<\epsilon<\epsilon_{0}$, $B(t)-B\left(t_{0}\right)<A \epsilon$ holds for all $0<t-t_{0} \leq \epsilon$.

Denote this event $E_{\epsilon, A}$ and let $E_{A}=\cap_{\epsilon} E_{\epsilon, A}$. But note that

$$
\begin{aligned}
\operatorname{Pr}\left(E_{\epsilon, A}\right) & =\operatorname{Pr}\left(B(t)-B\left(t_{0}\right)<A \epsilon, \text { for all } 0<t-t_{0} \leq \epsilon\right) \\
& =1-\operatorname{Pr}(M(\epsilon)>A \epsilon)=1-2 \operatorname{Pr}(B(\epsilon)>A \epsilon) \\
& =1-2\left(1-\Phi\left(\frac{A \epsilon}{\sqrt{\epsilon}}\right)\right)=1-2(1-\Phi(A \sqrt{\epsilon}))
\end{aligned}
$$

Taking the RHS to 0 takes the LHS to 0 , and thus $P\left(E_{A}\right)=0$.

Quadratic variation: $(d B)^{2}=d t$

Theorem 4
For a partition $\Pi=\left\{t_{0}, t_{1}, \ldots, t_{j}\right\}$ of the interval $[0, T]$, let
$|\Pi|=\max _{i}\left(t_{i+1}-t_{i}\right)$. A Brownian motion satisfies the following equation with probability 1 :

$$
\lim _{|\Pi| \rightarrow 0} \sum_{i}\left(B\left(t_{i+1}\right)-B\left(t_{i}\right)\right)^{2}=T .
$$

Proof.
For simplicity, assume gaps $t_{i+1}-t_{i}$ are uniform. Then $t_{i}=i T / n$ for $i=0, \ldots, n-1$ and $B\left(t_{i+1}\right)-B\left(t_{i}\right) \sim N(0, T / n)$. Then by the LLN, for n large,

$$
\frac{1}{n} \sum_{i=0}^{n-1}\left(B\left(t_{i+1}\right)-B\left(t_{i}\right)\right)^{2} \approx T / n
$$

Quadratic variation: $(d B)^{2}=d t$

This result suggests that Brownian motion moves around a lot. For reference, assume f is differentiable. Then,

$$
\begin{aligned}
\sum_{i}\left(f\left(t_{i+1}\right)-f\left(t_{i}\right)\right)^{2} & \leq \sum_{i}\left(t_{i+1}-t_{i}\right)^{2} f^{\prime}\left(s_{i}\right)^{2} \\
& \leq \max _{s \in[0, T]} f^{\prime}(s)^{2} \sum_{i}\left(t_{i+1}-t_{i}\right)^{2} \\
& \leq \max _{s \in[0, T]} f^{\prime}(s)^{2} \cdot \max _{i}\left(t_{i+1}-t_{i}\right) \cdot T .
\end{aligned}
$$

Sending the $\max _{i}\left(t_{i+1}-t_{i}\right)$ to 0 sends the LHS to 0 .

Brownian motion with drift

We can always add a drift term and consider $X(t)=\mu t+B(t)$. The drift term overpowers diffusion in a certain sense: for any $\epsilon>0$, as t gets large, $X(t)$ is always within the lines $y=(\mu \pm \epsilon) t$.

Ito's lemma

We know $\frac{d B_{t}}{d t}$ does not exist: $B(t)$ is nowhere differentiable with probability 1 . But we define the infinitesimal $d f$ for a smooth function $f(B(t))$? We know we cannot simply apply the chain rule:

$$
d f=\left(f^{\prime}\left(B_{t}\right) \frac{d B_{t}}{d t}\right) d t
$$

But maybe we can do this anyway by using $d B_{t}$ directly instead? Then the previous equation becomes

$$
d f=f^{\prime}\left(B_{t}\right) d B_{t}
$$

But this only works when $\Delta x \cdot f^{\prime}(x)$ dominates all other terms in the Taylor expansion

$$
f(x+\Delta x)-f(x)=\Delta x \cdot f^{\prime}(x)+\frac{(\Delta x)^{2}}{2} f^{\prime \prime}(x)+\cdots
$$

Ito's lemma

Let's plug ΔB_{t} into the Taylor expansion:

$$
\Delta f=\Delta B_{t} \cdot f^{\prime}\left(B_{t}\right)+\frac{\left(\Delta B_{t}\right)^{2}}{2} f^{\prime \prime}\left(B_{t}\right)+\cdots
$$

But we know that $\mathrm{E}\left(\Delta B_{t}\right)^{2}=\Delta t$ (quadratic variation), so

$$
\Delta f=\Delta B_{t} \cdot f^{\prime}\left(B_{t}\right)+\frac{\Delta t}{2} f^{\prime \prime}\left(B_{t}\right)+\cdots
$$

This gives us the simplest statement of Ito's lemma:

$$
d f\left(B_{t}\right)=f^{\prime}\left(B_{t}\right) d B_{t}+\frac{1}{2} f^{\prime \prime}\left(B_{t}\right) d t
$$

Ito's lemma

More generally, for a smooth function $f(t, x)$, we have

$$
d f=\frac{\partial f}{\partial t} d t+\frac{\partial f}{\partial x} d x
$$

In Ito calculus, this becomes:

$$
\begin{aligned}
d f\left(t, B_{t}\right) & =\frac{\partial f}{\partial t} d t+\frac{\partial f}{\partial x} d B_{t}+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\left(d B_{t}\right)^{2} \\
& =\left(\frac{\partial f}{\partial t}+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\right) d t+\frac{\partial f}{\partial x} d B_{t}
\end{aligned}
$$

Ito's lemma

Theorem 5
Let $f(t, x)$ be a smooth function, and let X_{t} be a stochastic process satisfying $d X_{t}=\mu_{t} d t+\sigma_{t} d B_{t}$. Then

$$
\begin{aligned}
d f\left(t, X_{t}\right) & =\frac{\partial f}{\partial t} d t+\frac{\partial f}{\partial x} d X_{t}+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\left(d X_{t}\right)^{2} \\
& =\left(\frac{\partial f}{\partial t}+\mu_{t} \frac{\partial f}{\partial x}+\frac{1}{2} \sigma_{t}^{2} \frac{\partial^{2} f}{\partial x^{2}}\right) d t+\sigma_{t} \frac{\partial f}{\partial x} d B_{t}
\end{aligned}
$$

Ito calculus

Define integration as the inverse of differentiation, i.e.,

$$
\begin{aligned}
F\left(t, B_{t}\right) & =\int f\left(t, B_{t}\right) d B_{t}+\int g\left(t, B_{t}\right) d t \\
& \Longleftrightarrow \\
d F\left(t, B_{t}\right) & =f\left(t, B_{t}\right) d B_{t}+g\left(t, B_{t}\right) d t
\end{aligned}
$$

Fundamental theorem of calculus

If $f(x)=x^{2} / 2$, then

$$
d f\left(B_{t}\right)=B_{t} d B_{t}+\frac{1}{2} d t
$$

This means that

$$
B_{T}^{2} / 2=\int_{0}^{T} B_{t} d B_{t}+\int_{0}^{T} \frac{1}{2} d t=\int_{0}^{T} B_{t} d B_{t}+T / 2
$$

and thus

$$
\int_{0}^{T} B_{t} d B_{t}=B_{T}^{2} / 2-T / 2
$$

Solving an SDE

If $f(t, x)=\exp (\mu t+\sigma x)$, then

$$
d f\left(t, B_{t}\right)=\left(\mu+\frac{1}{2} \sigma^{2}\right) f\left(t, B_{t}\right) d t+\sigma f\left(t, B_{t}\right) d B_{t}
$$

Question: which stochastic process $X_{t}\left(t, B_{t}\right)$ satisfies the SDE

$$
d X_{t}=\sigma X_{t} d B_{t} ?
$$

Solution: set $\mu=-\sigma^{2} / 2$ to get

$$
X\left(t, B_{t}\right)=\exp \left(-\sigma^{2} t / 2+\sigma B_{t}\right)
$$

Ito calculus

Theorem 6
Let $\Delta(t)$ be a nonrandon function of time. Suppose the stochastic process $I(t)$ satisfies

$$
d l(t)=\Delta_{s} d B_{s}, \quad \text { i.e., } \quad I(t)=\int_{0}^{t} \Delta_{s} d B_{s}
$$

where $I(0)=0$. Then for each $t>0, I(t)$ is normally distributed.

Ito calculus

Let X_{t} be a stochastic process. A process Δ_{t} is an adapted process w.r.t. X_{t} if for all $t \geq 0$, the random variable Δ_{t} depends only on X_{s} for $s \leq t$.

- The process $\Delta_{t}=X_{t}$ is an adapted process.
- The process $\Delta_{t}=\min \left(X_{t}, c\right)$ for c constant is an adapted process.
- The process $\Delta_{t}=\max _{0 \leq t \leq T} X_{t}$ is not an adapted process.
- If τ is a stopping time, then X_{τ} is an adapted process.

Recall that a stochastic process X_{t} is a martingale if $\mathrm{E}\left|X_{t}\right|<\infty$ and $\mathrm{E}\left(X_{t} \mid\left\{X_{\tau}, \tau \leq s\right\}\right)=X_{s}$ for all $s \leq t$.

Ito calculus

Theorem 7
For all adapted processes $g\left(t, B_{t}\right)$ satisfying the L^{2} bound

$$
\iint_{0}^{t} g^{2}\left(s, B_{s}\right) d s d B_{s}<\infty
$$

the integral

$$
\int_{0}^{t} g\left(s, B_{s}\right) d B_{s}
$$

is a martingale.

Ito calculus

The process B_{t} itself is an adapted process. Recall that

$$
\int_{0}^{t} B_{s} d B_{s}=\frac{1}{2}\left(B_{t}^{2}-t\right) \quad \text { and } \quad E B_{t}^{2}=t
$$

Hence

$$
E\left(\int_{0}^{t} B_{s} d B_{s}\right)=0
$$

More generally,

$$
\begin{aligned}
\mathrm{E}\left(\int_{t_{1}}^{t_{2}} B_{s} d B_{s} \mid \mathcal{F}_{t_{1}}\right) & =\mathrm{E}\left(\left.\frac{1}{2}\left(B_{t_{2}}^{2}-t_{2}\right) \right\rvert\, \mathcal{F}_{t_{1}}\right)-\frac{1}{2}\left(B_{t_{1}}^{2}-t_{1}\right) \\
& =\frac{1}{2}\left(t_{2}-t_{1}\right)+\frac{1}{2} B_{t_{1}}^{2}-\frac{t_{2}}{2}-\frac{1}{2}\left(B_{t_{1}}^{2}-t_{1}\right)=0
\end{aligned}
$$

The theorem is confirmed for $g\left(s, B_{s}\right)=B_{s}$.

Ito isometry

Theorem 8
For all adapted processes Δ_{t} w.r.t. B_{t}

$$
E\left(\left(\int_{0}^{t} \Delta_{s} d B_{s}\right)^{2}\right)=E\left(\int_{0}^{t} \Delta_{s}^{2} d s\right)
$$

Let $\Delta(t)=1$. Then

$$
\mathrm{E}\left(\left(\int_{0}^{t} \Delta_{s} d B_{s}\right)^{2}\right)=\mathrm{E}\left(B_{t}^{2}\right)=t
$$

and

$$
\mathrm{E}\left(\int_{0}^{t} \Delta_{s}^{2} d s\right)=t
$$

Stochastic differential equations

We wish to solve equations of the form

$$
d X(t)=\mu(t, X(t)) d t+\sigma(t, X(t)) d B(t)
$$

A function X satisfies this equation if

$$
X_{T}=\int_{0}^{T} \mu\left(t, X_{t}\right) d t+\int_{0}^{T} \sigma\left(t, X_{t}\right) d B(t)
$$

Stochastic differential equations

Theorem 9 (Existence and uniqueness)
If the coefficients of the SDE

$$
\begin{aligned}
d X(t) & =\mu(t, X(t)) d t+\sigma(t, X(t)) d B(t) \\
X(0) & =x_{0}, \quad 0 \leq t \leq T
\end{aligned}
$$

satisfy the conditions

$$
|\mu(t, x)-\mu(t, y)|^{2}+|\sigma(t, x)-\sigma(t, y)|^{2} \leq K|x-y|^{2}
$$

and

$$
|\mu(t, x)|^{2}+|\sigma(t, x)|^{2} \leq K\left(1+|x|^{2}\right)
$$

then there is an adapted process solution $X(t)$ that satisfies the L^{2} bound. If X and Y are both continuous solutions satisfying the L^{2} bound, then

$$
\operatorname{Pr}(X(t)=Y(t), \forall t \in[0, T])=1
$$

Solving $d X(t)=\mu X(t) d t+\sigma X(t) d B(t), \quad X(0)=x_{0}>0$

Step 1: assume $X(t)=f(t, B(t))$, then

$$
d X(t)=\left(\frac{\partial f}{\partial t}+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\right) d t+\frac{\partial f}{\partial x} d B(t)
$$

Step 2: equate

$$
\mu X(t)=\left(\frac{\partial f}{\partial t}+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\right) \quad \text { and } \quad \sigma X(t)=\frac{\partial f}{\partial x}
$$

Step 3: solve the second equation with

$$
f(t, x)=x_{0} \exp (\sigma x+g(t))
$$

Step 4: plug this into first equation

$$
\mu f=g^{\prime}(t) f+\frac{\sigma^{2}}{2} f \quad \text { to get } \quad g^{\prime}(t)=\mu-\sigma^{2} / 2
$$

Step 5: recognize that

$$
f(t, x)=x_{0} \exp \left(\sigma x+\left(\mu-\sigma^{2} / 2\right) t\right) \quad \text { or } \quad X(t)=x_{0} \exp \left(\sigma B(t)+\left(\mu-\sigma^{2} / 2\right) t\right)
$$

Solving $d X(t)=-\alpha X(t) d t+\sigma d B(t), \quad X(0)=x_{0}$

Try the test function

$$
X(t)=a(t)\left(x_{0}+\int_{0}^{t} b(s) d B(s)\right), \quad a(0)=1, \quad a(t)>0, \forall t
$$

Differentiating gives

$$
\begin{aligned}
d X(t) & =a^{\prime}(t) d t\left(x_{0}+\int_{0}^{t} b(s) d B(s)\right)+a(t) b(t) d B(t) \\
& =\frac{a^{\prime}(t)}{a(t)} X(t) d t+a(t) b(t) d B(t)
\end{aligned}
$$

Matching this to the original SDE gives

$$
-\alpha=\frac{a^{\prime}(t)}{a(t)}, \quad \sigma=a(t) b(t)
$$

Thus $a(t)=\exp (-\alpha t), b(t)=\sigma \exp (\alpha t)$ and

$$
X(t)=x_{0} \exp (-\alpha t)+\sigma \int_{0}^{t} \exp (\alpha(s-t)) d B(s)
$$

Euler's method for ODEs

Problem: obtain $u(1)$ for ODE $u^{\prime}(x)=5 u(x)+2$ with $u(0)=0$. Solution: select small number $h>0$ and use Taylor approximation at each step for times $t=0,1 h, 2 h, \ldots,(1 / h-1) / h, 1$.

$$
u(t+h) \approx u(t)+h \cdot u^{\prime}(t)=u(t)+h \cdot(5 u(x)+2)
$$

Euler-Maruyama

Problem: obtain distribution of $X(1)$ for OU equation $d X(t)=-\alpha X(t) d t+\sigma d B(t)$ with $X(0)=0$.
Solution: select small number $h>0$ and use Taylor approximation at each step for times $t=0,1 h, 2 h, \ldots,(1 / h-1) / h, 1$.

$$
X(t+h) \approx X(t)+d X(t)=X(t)-h \alpha X(t)+\sigma \sqrt{h} Z_{t+h}
$$

Langevin Monte Carlo

We are interested in generating samples from a target distribution

$$
\pi(\theta) \propto \exp (-U(\theta))
$$

so we simulate the diffusion that solves the SDE

$$
\begin{aligned}
d \theta(t) & =-\nabla U(\theta(t)) d t+\sqrt{2} d B(t) \\
& =\nabla \log \pi(\theta(t)) d t+\sqrt{2} d B(t)
\end{aligned}
$$

using the Euler-Maruyama method, e.g.,

$$
\theta(t+h)=\theta(t)+h \nabla \log \pi(\theta(t))+\sqrt{2 h} Z_{t+h} .
$$

Langevin Monte Carlo

100k steps: $h=0.1$, time $=10$ k

Justifying LMC

The stochastic process $\theta(t)$ that satisfies

$$
d \theta(t)=\nabla \log \pi(\theta(t)) d t+\sqrt{2} d B(t)
$$

leaves $\pi(\theta)$ invariant. To see this, we use a PDE that describes the evolution of the probability density function of $X(t)$ with time for the general Ito diffusion

$$
d X(t)=\mu(t, X(t)) d t+\sigma(t, X(t)) d B(t)
$$

In 1D, this PDE is the Fokker-Plank equation:

$$
\frac{\partial}{\partial t} p(t, x)=-\frac{\partial}{\partial x}(\mu(t, x) p(t, x))+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}\left(\sigma^{2}(t, x) p(t, x)\right) .
$$

For us, this becomes

$$
\frac{\partial}{\partial t} p(t, \theta)=-\frac{\partial}{\partial \theta}\left(\frac{\partial}{\partial \theta} \log \pi(\theta) p(t, \theta)\right)+\frac{\partial^{2}}{\partial \theta^{2}} p(t, \theta)
$$

Justifying LMC

For us, this becomes:

$$
\frac{\partial}{\partial t} p(t, \theta)=-\frac{\partial}{\partial \theta}\left(\frac{\partial}{\partial \theta} \log \pi(\theta) p(t, \theta)\right)+\frac{\partial^{2}}{\partial \theta^{2}} p(t, \theta) .
$$

Want to show: if $p(t, \theta)=\pi(\theta)$, then $\frac{\partial}{\partial t} p(t, \theta)=0$. Plug it in:

$$
\begin{aligned}
\frac{\partial}{\partial t} p(t, \theta) & =-\frac{\partial}{\partial \theta}\left(\frac{\partial}{\partial \theta} \log \pi(\theta) \pi(\theta)\right)+\frac{\partial^{2}}{\partial \theta^{2}} \pi(\theta) \\
& =\frac{\partial}{\partial \theta}\left(-\frac{\partial}{\partial \theta} \pi(\theta)+\frac{\partial}{\partial \theta} \pi(\theta)\right)=0
\end{aligned}
$$

