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Brownian motion

Theorem 1
There exists a probability distribution over the set of continuous
functions B : R→ R satisfying the following conditions:

(i) B(0) = 0

(ii) for all 0 ≤ s < t, B(t)− B(s) ∼ N(0, t − s).

(iii) B(ti )− B(si ) ⊥ B(tj)− B(sj) for si < ti ≤ sj < tj .

Item (ii) is stationarity, where t − s is the variance. Item (iii) is
independence over non-overlapping increments.
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Strong Markov property

A random variable τ ∈ [0,∞] is a stopping time if we can decide
whether {τ < t} just by knowing the path of B(t) up to time t.
Example: τ might be the first time an event of interest happens.

Theorem 2
For every a.s. finite stopping time τ , the process
{B(τ + t)− B(τ) : t ≥ 0} is independent of the history of B(t) up
to time τ .
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Reflection principle

Theorem 3
If τ is a stopping time and {B(t) : t ≥ 0} a standard Brownian
motion, then the process {B∗(t) : t ≥ 0} called “Brownian motion
reflected at τ” and defined by

B∗(t) = B(t)1{t≤τ} + (2B(τ)− B(t))1{t>τ}

is also a standard Brownian motion.
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The distribution of the maximum

Let M(t) = max0≤s≤t B(s). M(t) is well-defined because B is
continuous and [0, t] is compact.

Proposition 1

The following holds for a > 0:

Pr(M(t) > a) = 2Pr(B(t) > a) = 2− 2Φ

(
a√
t

)
.
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The distribution of the maximum

Proposition 1

The following holds for a > 0:

Pr(M(t) > a) = 2Pr(B(t) > a) = 2− 2Φ

(
a√
t

)
.

Proof.
Define τa = mins{s : B(s) = a} and let {B∗(t) : t ≥ 0} be a
Brownian motion reflected at τa. Then {M(t) > a} is the disjoint
union of events {B(t) > a} and

{M(t) > a, B(t) ≤ a} = {B∗(t) ≥ a} .
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Brownian motion is not differentiable

Proposition 2

For t ≥ 0, the Brownian motion is a.s. not differentiable at t.

Proof.
Assume Brownian motion B is differentiable at a fixed t0. Then
there exists constants A and ε0 s.t. for all 0 < ε < ε0,
B(t)− B(t0) < Aε holds for all 0 < t − t0 ≤ ε.

Denote this event Eε,A and let EA = ∩εEε,A . But note that

Pr(Eε,A) = Pr (B(t)− B(t0) < Aε, for all 0 < t − t0 ≤ ε)
= 1− Pr(M(ε) > Aε) = 1− 2Pr(B(ε) > Aε)

= 1− 2(1− Φ

(
Aε√
ε

)
) = 1− 2(1− Φ(A

√
ε))

Taking the RHS to 0 takes the LHS to 0, and thus P(EA) = 0.
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Quadratic variation: (dB)2 = dt

Theorem 4
For a partition Π = {t0, t1, . . . , tj} of the interval [0,T ], let
|Π| = maxi (ti+1 − ti ). A Brownian motion satisfies the following
equation with probability 1:

lim
|Π|→0

∑
i

(B(ti+1)− B(ti ))2 = T .

Proof.
For simplicity, assume gaps ti+1 − ti are uniform. Then ti = iT/n
for i = 0, . . . , n − 1 and B(ti+1)− B(ti ) ∼ N(0,T/n). Then by
the LLN, for n large,

1

n

n−1∑
i=0

(B(ti+1)− B(ti ))2 ≈ T/n .
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Quadratic variation: (dB)2 = dt

This result suggests that Brownian motion moves around a lot. For
reference, assume f is differentiable. Then,∑

i

(f (ti+1)− f (ti ))2 ≤
∑
i

(ti+1 − ti )
2f ′(si )

2

≤ max
s∈[0,T ]

f ′(s)2
∑
i

(ti+1 − ti )
2

≤ max
s∈[0,T ]

f ′(s)2 ·max
i

(ti+1 − ti ) · T .

Sending the maxi (ti+1 − ti ) to 0 sends the LHS to 0.
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Brownian motion with drift

We can always add a drift term and consider X (t) = µt + B(t).
The drift term overpowers diffusion in a certain sense: for any
ε > 0, as t gets large, X (t) is always within the lines y = (µ± ε)t.
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Ito’s lemma

We know dBt
dt does not exist: B(t) is nowhere differentiable with

probability 1. But we define the infinitesimal df for a smooth
function f (B(t))? We know we cannot simply apply the chain rule:

df =

(
f ′(Bt)

dBt

dt

)
dt .

But maybe we can do this anyway by using dBt directly instead?
Then the previous equation becomes

df = f ′(Bt)dBt .

But this only works when ∆x · f ′(x) dominates all other terms in
the Taylor expansion

f (x + ∆x)− f (x) = ∆x · f ′(x) +
(∆x)2

2
f ′′(x) + · · · .
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Ito’s lemma

Let’s plug ∆Bt into the Taylor expansion:

∆f = ∆Bt · f ′(Bt) +
(∆Bt)

2

2
f ′′(Bt) + · · · .

But we know that E(∆Bt)
2 = ∆t (quadratic variation), so

∆f = ∆Bt · f ′(Bt) +
∆t

2
f ′′(Bt) + · · · .

This gives us the simplest statement of Ito’s lemma:

df (Bt) = f ′(Bt)dBt +
1

2
f ′′(Bt)dt .
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Ito’s lemma

More generally, for a smooth function f (t, x), we have

df =
∂f

∂t
dt +

∂f

∂x
dx .

In Ito calculus, this becomes:

df (t,Bt) =
∂f

∂t
dt +

∂f

∂x
dBt +

1

2

∂2f

∂x2
(dBt)

2

=

(
∂f

∂t
+

1

2

∂2f

∂x2

)
dt +

∂f

∂x
dBt .
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Ito’s lemma

Theorem 5
Let f (t, x) be a smooth function, and let Xt be a stochastic
process satisfying dXt = µtdt + σtdBt . Then

df (t,Xt) =
∂f

∂t
dt +

∂f

∂x
dXt +

1

2

∂2f

∂x2
(dXt)

2

=

(
∂f

∂t
+ µt

∂f

∂x
+

1

2
σ2
t

∂2f

∂x2

)
dt + σt

∂f

∂x
dBt .
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Ito calculus

Define integration as the inverse of differentiation, i.e.,

F (t,Bt) =

∫
f (t,Bt)dBt +

∫
g(t,Bt)dt

⇐⇒
dF (t,Bt) = f (t,Bt)dBt + g(t,Bt)dt .
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Fundamental theorem of calculus

If f (x) = x2/2, then

df (Bt) = BtdBt +
1

2
dt .

This means that

B2
T/2 =

∫ T

0
BtdBt +

∫ T

0

1

2
dt =

∫ T

0
BtdBt + T/2

and thus ∫ T

0
BtdBt = B2

T/2− T/2 .
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Solving an SDE

If f (t, x) = exp (µt + σx), then

df (t,Bt) = (µ+
1

2
σ2)f (t,Bt)dt + σf (t,Bt)dBt .

Question: which stochastic process Xt(t,Bt) satisfies the SDE

dXt = σXtdBt ?

Solution: set µ = −σ2/2 to get

X (t,Bt) = exp
(
−σ2t/2 + σBt

)
.
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Ito calculus

Theorem 6
Let ∆(t) be a nonrandon function of time. Suppose the stochastic
process I (t) satisfies

dI (t) = ∆sdBs , i.e., I (t) =

∫ t

0
∆sdBs ,

where I (0) = 0. Then for each t > 0, I (t) is normally distributed.
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Ito calculus

Let Xt be a stochastic process. A process ∆t is an adapted process
w.r.t. Xt if for all t ≥ 0, the random variable ∆t depends only on
Xs for s ≤ t.

I The process ∆t = Xt is an adapted process.

I The process ∆t = min(Xt , c) for c constant is an adapted
process.

I The process ∆t = max0≤t≤T Xt is not an adapted process.

I If τ is a stopping time, then Xτ is an adapted process.

Recall that a stochastic process Xt is a martingale if E|Xt | <∞
and E(Xt |{Xτ , τ ≤ s}) = Xs for all s ≤ t.
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Ito calculus

Theorem 7
For all adapted processes g(t,Bt) satisfying the L2 bound∫ ∫ t

0
g2(s,Bs)ds dBs <∞

the integral ∫ t

0
g(s,Bs)dBs

is a martingale.
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Ito calculus

The process Bt itself is an adapted process. Recall that∫ t

0
BsdBs =

1

2
(B2

t − t) and EB2
t = t .

Hence

E

(∫ t

0
BsdBs

)
= 0 .

More generally,

E

(∫ t2

t1

BsdBs

∣∣∣Ft1

)
= E

(
1

2
(B2

t2
− t2)

∣∣∣Ft1

)
− 1

2
(B2

t1
− t1)

=
1

2
(t2 − t1) +

1

2
B2
t1
− t2

2
− 1

2
(B2

t1
− t1) = 0 .

The theorem is confirmed for g(s,Bs) = Bs .
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Ito isometry

Theorem 8
For all adapted processes ∆t w.r.t. Bt

E

((∫ t

0
∆sdBs

)2
)

= E

(∫ t

0
∆2

sds

)
.

Let ∆(t) = 1. Then

E

((∫ t

0
∆sdBs

)2
)

= E(B2
t ) = t ,

and

E

(∫ t

0
∆2

sds

)
= t .

23



Stochastic differential equations

We wish to solve equations of the form

dX (t) = µ(t,X (t))dt + σ(t,X (t))dB(t) .

A function X satisfies this equation if

XT =

∫ T

0
µ(t,Xt)dt +

∫ T

0
σ(t,Xt)dB(t) .
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Stochastic differential equations

Theorem 9 (Existence and uniqueness)
If the coefficients of the SDE

dX (t) = µ(t,X (t))dt + σ(t,X (t))dB(t)

X (0) = x0 , 0 ≤ t ≤ T

satisfy the conditions

|µ(t, x)− µ(t, y)|2 + |σ(t, x)− σ(t, y)|2 ≤ K |x − y |2

and

|µ(t, x)|2 + |σ(t, x)|2 ≤ K(1 + |x |2) ,

then there is an adapted process solution X (t) that satisfies the L2 bound. If X
and Y are both continuous solutions satisfying the L2 bound, then

Pr(X (t) = Y (t), ∀t ∈ [0,T ]) = 1 .
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Solving dX (t) = µX (t)dt +σX (t)dB(t) , X (0) = x0 > 0

Step 1: assume X (t) = f (t,B(t)), then

dX (t) =

(
∂f

∂t
+

1

2

∂2f

∂x2

)
dt +

∂f

∂x
dB(t) .

Step 2: equate

µX (t) =

(
∂f

∂t
+

1

2

∂2f

∂x2

)
and σX (t) =

∂f

∂x
.

Step 3: solve the second equation with

f (t, x) = x0 exp (σx + g(t)) .

Step 4: plug this into first equation

µf = g ′(t)f +
σ2

2
f to get g ′(t) = µ− σ2/2 .

Step 5: recognize that

f (t, x) = x0 exp(σx + (µ− σ2/2)t) or X (t) = x0 exp(σB(t) + (µ− σ2/2)t) .
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Solving dX (t) = −αX (t)dt + σdB(t) , X (0) = x0

Try the test function

X (t) = a(t)

(
x0 +

∫ t

0

b(s)dB(s)

)
, a(0) = 1 , a(t) > 0 , ∀t .

Differentiating gives

dX (t) = a′(t)dt

(
x0 +

∫ t

0

b(s)dB(s)

)
+ a(t)b(t)dB(t)

=
a′(t)

a(t)
X (t)dt + a(t)b(t)dB(t) .

Matching this to the original SDE gives

−α =
a′(t)

a(t)
, σ = a(t)b(t) .

Thus a(t) = exp(−αt), b(t) = σ exp(αt) and

X (t) = x0 exp(−αt) + σ

∫ t

0

exp(α(s − t))dB(s) .
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Euler’s method for ODEs

Problem: obtain u(1) for ODE u′(x) = 5u(x) + 2 with u(0) = 0.
Solution: select small number h > 0 and use Taylor approximation
at each step for times t = 0, 1h, 2h, . . . , (1/h − 1)/h, 1.

u(t + h) ≈ u(t) + h · u′(t) = u(t) + h · (5u(x) + 2) .
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Euler-Maruyama

Problem: obtain distribution of X (1) for OU equation
dX (t) = −αX (t)dt + σdB(t) with X (0) = 0.
Solution: select small number h > 0 and use Taylor approximation
at each step for times t = 0, 1h, 2h, . . . , (1/h − 1)/h, 1.

X (t + h) ≈ X (t) + dX (t) = X (t)− hαX (t) + σ
√
hZt+h .
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Langevin Monte Carlo

We are interested in generating samples from a target distribution

π(θ) ∝ exp(−U(θ)) ,

so we simulate the diffusion that solves the SDE

dθ(t) = −∇U(θ(t))dt +
√

2dB(t)

= ∇ log π(θ(t))dt +
√

2dB(t)

using the Euler-Maruyama method, e.g.,

θ(t + h) = θ(t) + h∇ log π(θ(t)) +
√

2hZt+h .
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Langevin Monte Carlo
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Justifying LMC
The stochastic process θ(t) that satisfies

dθ(t) = ∇ log π(θ(t))dt +
√

2dB(t)

leaves π(θ) invariant. To see this, we use a PDE that describes the
evolution of the probability density function of X (t) with time for
the general Ito diffusion

dX (t) = µ(t,X (t))dt + σ(t,X (t))dB(t) .

In 1D, this PDE is the Fokker-Plank equation:

∂

∂t
p(t, x) = − ∂

∂x
(µ(t, x)p(t, x)) +

1

2

∂2

∂x2

(
σ2(t, x)p(t, x)

)
.

For us, this becomes

∂

∂t
p(t, θ) = − ∂

∂θ

(
∂

∂θ
log π(θ)p(t, θ)

)
+

∂2

∂θ2
p(t, θ) .
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Justifying LMC

For us, this becomes:

∂

∂t
p(t, θ) = − ∂

∂θ

(
∂

∂θ
log π(θ)p(t, θ)

)
+

∂2

∂θ2
p(t, θ) .

Want to show: if p(t, θ) = π(θ), then ∂
∂t p(t, θ) = 0. Plug it in:

∂

∂t
p(t, θ) = − ∂

∂θ

(
∂

∂θ
log π(θ)π(θ)

)
+

∂2

∂θ2
π(θ)

=
∂

∂θ

(
− ∂

∂θ
π(θ) +

∂

∂θ
π(θ)

)
= 0 .
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