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Hilbert space

A Hilbert space H is an inner product space that is also a complete
metric space w.r.t. the distance function

d(x,y) =llx =yl = V{x—y,x—y)
induced by the inner product (-,-). For x,y € H, this inner product
satisfies
1. symmetry, i.e., (x,y) = (y,x),
2. linearity, i.e., (ax1 + bxo,y) = a(x1,y) + b(x2,y),

3. positive definiteness, i.e.,

(x,x) >0, x#0
(x,x)=0, x=0.



[?-space

For a measure space X, a function f : X — R is square integrable if

/X f(x)?dx < o00.

The set of square integrable functions on X equipped with the
inner product

(fl,f2>:/xf1(x)f2(x)dx

is a Hilbert space.



RKHS

A Hilbert space is a reproducing kernel Hilbert space H, if for every
function f € H defined on X, there exists a function
K: X x X —= R, such that

1. For all y, as a function of x, K(x,y) € H
2. Reproducing property: for all x € X,

F(x) = (K(,x), £()) -

Function K(x,y) is the reproducing kernel of the space H.



Symmetry

Proposition 1
A reproducing kernel K(-,-) is symmetric.

Proof.



Uniqueness of K

Proposition 2

If a reproducing kernel K exists, it is unique.

Proof.

Assume there exists another reproducing kernel K’. Then

0 < [|K(-x) — K'(-, %)

= <K(-,X) - K/(~,X), K('7X) - K/( 7X)>
= <K('aX) - K/(~,X >K('7X)> - <K( vX) - K/(-,X), K/( ,X)>
= (K(x,x) — K(x,x)) — (K'(x,x) — K'(x,x)) =0



Positive definiteness

Proposition 3
A reproducing kernel K is positive definite.

Proof.
Forany y1,...,yp € X and ay, ..., an,

ZZK Yi,Yj)aiaj = ZZ 5 Yi))2i2;
— Za,- i ,Zaj ¢, y)
—Hza, 2=



One-to-one relationship

Theorem 1 (Moore-Aronszajn theorem)

To every RKHS H there exists a unique symmetric, positive definite function
K(-,+). For every symmetric, positive definite function K(-,-) there exists a
unique RKHS H.

For an RKHS H, we have shown uniqueness, symmetry and positive
definiteness of K(-,-). For a symmetric, positive definite K(-,-), let
Ho = span{Kx := K(x,-),x € X}. Define the inner product on Hp

(Z aiKy, Z biKy ) Hy = Z Z aibiK(xi, xj)
i=1 j=1 i=1 j=1

and note it is symmetric, non-degenerate and satisfies (Kx, K, )n, = K(x,y).
Let H be the completion of Hp, having functions

n+p

f(x) = Z aiKy(x) for which  lim il;[g I Z aiKsg [, -
i=1 = i=n



One-to-one relationship

The reproducing property holds on this completion:

¢S]

Za, Ky, K H ZK(X{,X):f(X).
i=1 i=1
To prove uniqueness, let G be another Hilbert space on which K is the
reproducing kernel. Then
<KX7 KY>G = K(X7y) = <KX7 KY>H

By linearity, (-,-)¢ = (-,)n on Ho, so Hy C G. But G is complete, so it
contains H, the completion of Hy. Finally, we need to show G C H. Let f € G.
Because H C G and closed, f = fy + f;.. Then

f(x) = (Kx, fle = (Kx, fyr )6 + (K, fu) e = (Kx, fu)e = (Kx, fu)n = fu(x),

where we use the fact that K, € H.



Roughness of RKHS

Proposition 4
Norm convergence implies pointwise convergence in an RKHS H.

Proof.

For any sequence f, € H,

[fa(x) = FO) = (K (%), () = FENT < K X)IHI ) = FC)I]
O
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Roughness of RKHS

L2 is rougher than an RKHS: norm convergence does not imply
pointwise convergence. Consider L2([0,1]) and the function

gn(x) = x

gn converges to g(x) =0 in norm:

1
1
2 2n
Lal /0 S P

But gn(1) =1 #0.

11



Mercer's theorem

Let K(-,-) : X x X — R be a symmetric function and define the
integral operator Ty : L2(X) — L?(X)

TKf(-):/K(‘,x)f(x)dx.

Tk is positive definite if for all f € L2, (f, Txf) > 0.

Theorem 2

If K is continuous and Ty is positive definite, then Tk has
eigenfunctions ¢; € L2 (||¢;|| = 1) with eigenvalues \; > 0 and for
all x,y € X,

K(X’y) = Z )\i¢i(x)¢i()/)
i=1
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Fourier decompositions and RKHS

Theorem 3
Let K(-,-) be an L2 kernel. For all f € L2, define the Fourier

coefficients as
fi— / F)bi(x)dx

For all f,g € L? the inner product on the RKHS of K is

figi
Fo) —
(f,g) N

and f € RKHS if

IFIP = Zf < 0.
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Fourier decompositions and RKHS

Proof.
The Fourier expansions for f(-) and K(x,-) are

=Y fidi(-) and K(x Zm
Then the above inner product satisfies

(K. 7() = Y T = 3 ) =

i

so K(-,x) is a reproducing kernel and has corresponding norm
FI12 =32, F2/ O
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Karhunen-Loeve

Let {X(t),t € T} be a zero mean, second order (E(X?) < co) stochastic
process. lts covariance function E(X(s)X(t)) = K(s, t) is continuous.

Theorem 4
Assume that \; and ¢; satisfy the following equation:

/T K(s, t)oi(t)dt = Aig(s),

where {¢:, i € N} are orthogonal eigenfunctions in L*> and {);, i € N} are
eigenvalues. Furthermore, specify

1
6= 2= /T X(8)6i(t)dt.
Then,

X(t) = Z Vi&idi(t)

i=1

as the following holds uniformly:

Jim E (X(t) - i ﬁw;(t)) =0

i=1
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Karhunen-Loeve

Theorem 4 (cont.) )
Conversely, if X(t) = >_72; VAi&igi(t) for {&} " (0,1), then

/ K(s. t)6i(t)dt = Nid(s)
i

Proof.
We'll use the whiteboard for this one. O
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KL and RKHS

Let {X(t),t € T} be a zero mean, second order (E(X?) < o)
Gaussian process with covariance function E(X(s)X(t)) = K(s, t).
When equipped with the covariance as inner product, the space

Hy = span{X(t),t € T}

is isometrically isomorphic to the RKHS of K. If X,, X, € Hx, i.e.,
Xm=>_ aiX(ti), Xo=)_ bX(t),

then (X, X,) = E(XnX,) is a valid inner product. The spaces are
isometrically isomorphic because

(X(s), X(t)) = E(X(s)X(1)) = K(t,5) = (K(t,-), K(s,-)) -
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KL and RKHS
Theorem 5

If {X(t),t € T} is a zero mean, second order Gaussian process with covariance
function E(X(s)X(t)) = K(s, t), then the sample path X(-) a.s. does not
belong to the RKHS of K.

Heuristic proof: recall that (for f, g € L?) the inner product on the RKHS of K
is

figi
f =
(f,g) N

where \; are the eigenvalues of K. Define the truncated KL expansion
P
Xo(t) =D VNidi(t),
i=1

and note that

()£ (£545) - S

i=1
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Truncated KL expansion

Again, the KL expansion uses coefficients A; and functions ¢; that
satisfy the integral equation

/ K(s, )6i(£)dt = \igsi(s)
:

Theorem 6
Among all truncated expansions that take the form

p
Xp(t) = > Vlixipi(t),  for /wi(f)lﬁj(t)df = djj
i=1

the truncated KL expansion minimizes the integrated mean
squared error

/E(ef,(t))dt, where e,(t) =Y \/lixithi(t).

i>p
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Truncated KL expansion

Proof. The expected squared error is

E(e() — E (z 5 mx,-w,-(tm-(t))

i>p j>p
—E (Zzw,-(tm—(t) // X(r1>><(s1)wn)wj(sl)dsldn)
i>p j>p
=SS w0 [ [ Kas)u)a)dnde
i>p j>p
The integrated expected squared error is then

[ e =S5 ([ uwu) [ [ Ko syuedsnd

i>p j>p

:Z//K(tlasl)wi(t1)¢i(51)ds1dt1.
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Truncated KL expansion

Proof continued. We are interested in the optimization problem

min/E(eﬁ(t))dt, as. /¢,-(t)¢,—(t)dt:5,—,—.

We therefore minimize the objective function

Q= Z// K(ty, s1)i(t)0i(s1)dsidts — Ai (/ V2 (t)dt — 1)

i>p

by taking the following functional derivative and setting equal to 0:
dQ
W(t) =2 [ K(t,s)vi(s)ds —2Xi9i(t) =0.
Thus, we obtain the Fredholm equation

/ K(t,s)¢i(s)ds = Xigi(t).
-
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Analytic example: Brownian motion on 7 = [0, 1]

Let s < t, the covariance function for Brownian motion is

K(s,t) = E(BsB:) = E (Bs(B — Bs + By))
= E(B?) =s.

Thus, the KL expansion corresponds to the integral equation
/ min(s, £)6(s)ds = A(t)
or
t 1
/ so(s)ds + ¢ / 6(s)ds = A6 (t),
0 t

and thus ¢(0) = 0.
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Analytic example: Brownian motion on 7 = [0, 1]
Taking the first derivative of both sides of

/Ot so(s)ds + t/t1 @(s)ds = Ap(t)

gives

1 d
ds = A—o(t).
| ote)ds =a50(0)
Taking the second derivative gives the ODE

2
—6(8) = AT 30(0).

which is solved by

o(t) = Asin(t/VA) + Bcos(t/V\).
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Analytic example: Brownian motion on 7 = [0, 1]

.. which is solved by
o(t) = Asin(t/VA) + Bcos(t/V\).
But ¢(0) = 0, so B =0 and ¢(t) = Asin(t/v/A). To get
eigenvalues, substitute ¢(t) into the first derivative equations:
A / sin(s/VN)ds = AN cos(t/VR) VR —
AV (cos(t/ﬁ)t— cos(1/ﬁ)) = AVxcos(t/V/A)
cos(1/VA) =0
4

A= i1,
T ei-1e 7

=
=
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Analytic example: Brownian motion on 7 = [0, 1]

Use the orthogonality of ¢; to get A:

1= /Olqs,?(t)dt: A2/Olsin2(t/ﬁ)dt
= A2 /1sin2 <<i— ;) 7rt> dt
= A2/20.

Therefore, A = /2. Thus, the KL expansion is

B(t) = \@;(zfgil)wsin (</—;> m) & N(,1).
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Analytic example: Brownian bridge on 7 = [0, 1]

Let B(t) be a standard Brownian motion and define the Brownian
bridge X(t) as

X(t) = B(t) — tB(1).

The covariance function is K(s,t) = min(s, t) — st. To see this, let
s<t:

K(s,t) = E(X(s)X(t)) = E((Bs — sB1)(B: — tBy))
— E(BsB;) — sE(B1B;) — tE(BsB;) + stE(B?)

=S—st—st+st=s—st.

So the integral equation is

/(min(s, t) — st) ¢(s)ds = \g(t)
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Analytic example: Brownian bridge on 7 = [0, 1]

Differentiating the integral equation

1
/O (min(s, £) — st) 6(s)ds = Ae(t)

w.r.t. t gives

1 1 d
| ots)ds = [ sols) =260
t 0
and differentiating again gives

2
—6(6) = A T30(0).

Just as with the standard Brownian motion, assuming ¢(0) =0

results in ¢(t) = Asin(t/V/\).
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Analytic example: Brownian bridge on 7 = [0, 1]

Substituting ¢(t) = Asin(t/v/)) into the first derivative equation

[ st [ so9) = 2ot

gives
A/1 sin(s/vV/\)ds — A/1 ssin(s/VA)ds = A\ cos(t/VA)/VA

VA (cos(t/\&) - cos(l/ﬁ)) -
Asin(1/vA) + VA cos(1/VA) = VA cos(t/VX)
sin(1/V/A) =0
1

Ai:ﬁ’ IZ].
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Analytic example: Brownian bridge on 7 = [0, 1]

Again, we use orthonormality of ¢; to solve for A:

A2
1:A2/ sin?(s/v/\i) ds—A2/ sin (/ws)ds:7.

Again, we have A = V2, and the KL expansion for the Brownian
bridge may be written

X(6) =Y VAigi(t)e
i>1

—fZ—sm (imt) f,'r'gN(O 1).

i>1
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