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Hilbert space

A Hilbert space H is an inner product space that is also a complete
metric space w.r.t. the distance function

d(x , y) = ||x − y || =
√
〈x − y , x − y〉

induced by the inner product 〈·, ·〉. For x , y ∈ H, this inner product
satisfies

1. symmetry, i.e., 〈x , y〉 = 〈y , x〉,
2. linearity, i.e., 〈ax1 + bx2, y〉 = a〈x1, y〉+ b〈x2, y〉,
3. positive definiteness, i.e.,

〈x , x〉 > 0 , x 6= 0

〈x , x〉 = 0 , x = 0 .
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L2-space

For a measure space X , a function f : X → R is square integrable if∫
X
f (x)2dx <∞ .

The set of square integrable functions on X equipped with the
inner product

〈f1, f2〉 =

∫
X
f1(x)f2(x)dx

is a Hilbert space.

3



RKHS

A Hilbert space is a reproducing kernel Hilbert space H, if for every
function f ∈ H defined on X , there exists a function
K : X × X → R, such that

1. For all y , as a function of x , K (x , y) ∈ H

2. Reproducing property: for all x ∈ X ,

f (x) = 〈K (·, x), f (·)〉 .

Function K (x , y) is the reproducing kernel of the space H.
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Symmetry

Proposition 1

A reproducing kernel K (·, ·) is symmetric.

Proof.

K (x , y) = 〈K (·, x),K (·, y)〉 = 〈K (·, y),K (·, x)〉 = K (y , x) .
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Uniqueness of K

Proposition 2

If a reproducing kernel K exists, it is unique.

Proof.
Assume there exists another reproducing kernel K ′. Then

0 ≤ ||K (·, x)− K ′(·, x)||2

= 〈K (·, x)− K ′(·, x),K (·, x)− K ′(·, x)〉
= 〈K (·, x)− K ′(·, x),K (·, x)〉 − 〈K (·, x)− K ′(·, x),K ′(·, x)〉
= 〈K (x , x)− K (x , x)〉 − 〈K ′(x , x)− K ′(x , x)〉 = 0 .

6



Positive definiteness

Proposition 3

A reproducing kernel K is positive definite.

Proof.
For any y1, . . . , yn ∈ X and a1, . . . , an,∑

i

∑
j

K (yi , yj)aiaj =
∑
i

∑
j

〈K (·, yi ),K (·, yj)〉aiaj

= 〈
∑
i

aiK (·, yi ),
∑
j

ajK (·, yj)〉

= ||
∑
i

aiK (·, yi )||2 ≥ 0 .
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One-to-one relationship

Theorem 1 (Moore-Aronszajn theorem)
To every RKHS H there exists a unique symmetric, positive definite function
K(·, ·). For every symmetric, positive definite function K(·, ·) there exists a
unique RKHS H.

For an RKHS H, we have shown uniqueness, symmetry and positive
definiteness of K(·, ·). For a symmetric, positive definite K(·, ·), let
H0 = span{Kx := K(x , ·), x ∈ X}. Define the inner product on H0

〈
n∑

i=1

aiKxi ,
m∑
j=1

bjKxj 〉H0 =
n∑

i=1

m∑
j=1

aibjK(xi , xj)

and note it is symmetric, non-degenerate and satisfies 〈Kx ,Ky 〉H0 = K(x , y).
Let H be the completion of H0, having functions

f (x) =
∞∑
i=1

aiKxi (x) for which lim
n→∞

sup
p≥0
||

n+p∑
i=n

aiKxi ||
2
H0
.
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One-to-one relationship

The reproducing property holds on this completion:

〈f ,Kx〉H =
∞∑
i=1

ai 〈Kxi ,Kx〉H0 =
∞∑
i=1

K(xi , x) = f (x) .

To prove uniqueness, let G be another Hilbert space on which K is the
reproducing kernel. Then

〈Kx ,Ky 〉G = K(x , y) = 〈Kx ,Ky 〉H .

By linearity, 〈·, ·〉G = 〈·, ·〉H on H0, so H0 ⊂ G . But G is complete, so it
contains H, the completion of H0. Finally, we need to show G ⊂ H. Let f ∈ G .
Because H ⊂ G and closed, f = fH + fH⊥ . Then

f (x) = 〈Kx , f 〉G = 〈Kx , fH⊥〉G + 〈Kx , fH〉G = 〈Kx , fH〉G = 〈Kx , fH〉H = fH(x) ,

where we use the fact that Kx ∈ H.
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Roughness of RKHS

Proposition 4

Norm convergence implies pointwise convergence in an RKHS H.

Proof.
For any sequence fn ∈ H,

|fn(x)− f (x)| = |〈K (·, x), fn(·)− f (·)〉| ≤ ||K (·, x)|| ||fn(·)− f (·)||
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Roughness of RKHS

L2 is rougher than an RKHS: norm convergence does not imply
pointwise convergence. Consider L2([0, 1]) and the function

gn(x) = xn

gn converges to g(x) = 0 in norm:

||gn||2 =

∫ 1

0
x2ndx =

1

2n + 1
→ 0 .

But gn(1) = 1 6= 0.
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Mercer’s theorem

Let K (·, ·) : X × X → R be a symmetric function and define the
integral operator TK : L2(X )→ L2(X )

TK f (·) =

∫
K (·, x)f (x)dx .

TK is positive definite if for all f ∈ L2, 〈f ,TK f 〉 > 0.

Theorem 2
If K is continuous and TK is positive definite, then TK has
eigenfunctions φi ∈ L2 (||φi || = 1) with eigenvalues λi > 0 and for
all x , y ∈ X,

K (x , y) =
∞∑
i=1

λiφi (x)φi (y)
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Fourier decompositions and RKHS

Theorem 3
Let K (·, ·) be an L2 kernel. For all f ∈ L2, define the Fourier
coefficients as

fi =

∫
f (x)φi (x)dx .

For all f , g ∈ L2 the inner product on the RKHS of K is

〈f , g〉 =
∑
i

figi
λi

,

and f ∈ RKHS if

||f ||2 =
∑
i

f 2i
λi

<∞ .
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Fourier decompositions and RKHS

Proof.
The Fourier expansions for f (·) and K (x , ·) are

f (·) =
∑
i

fiφi (·) and K (x , ·) =
∑
i

λiφi (x)φi (·) .

Then the above inner product satisfies

〈K (·, x), f (·)〉 =
∑
i

fiλiφi (x)

λi
=
∑
i

fiφi (x) = f (x)

so K (·, x) is a reproducing kernel and has corresponding norm
||f ||2 =

∑
i f

2
i /λi .
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Karhunen-Loeve
Let {X (t), t ∈ T } be a zero mean, second order (E(X 2

t ) <∞) stochastic
process. Its covariance function E(X (s)X (t)) = K(s, t) is continuous.

Theorem 4
Assume that λi and φi satisfy the following equation:∫

T
K(s, t)φi (t)dt = λiφi (s) ,

where {φi , i ∈ N} are orthogonal eigenfunctions in L2 and {λi , i ∈ N} are
eigenvalues. Furthermore, specify

ξi =
1√
λi

∫
T
X (t)φi (t)dt .

Then,

X (t) =
∞∑
i=1

√
λiξiφi (t)

as the following holds uniformly:

lim
p→∞

E

(
X (t)−

p∑
i=1

√
λiξiφi (t)

)2

= 0
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Karhunen-Loeve

Theorem 4 (cont.)

Conversely, if X (t) =
∑∞

i=1

√
λiξiφi (t) for {ξi}

iid∼ (0, 1), then∫
T
K (s, t)φi (t)dt = λiφi (s) .

Proof.
We’ll use the whiteboard for this one.
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KL and RKHS

Let {X (t), t ∈ T } be a zero mean, second order (E (X 2
t ) <∞)

Gaussian process with covariance function E (X (s)X (t)) = K (s, t).
When equipped with the covariance as inner product, the space

Hx = span{X (t), t ∈ T }

is isometrically isomorphic to the RKHS of K . If Xm,Xn ∈ HX , i.e.,

Xm =
∑
i

aiX (ti ) , Xn =
∑
i

biX (ti ) ,

then 〈Xm,Xn〉 = E (XmXn) is a valid inner product. The spaces are
isometrically isomorphic because

〈X (s),X (t)〉 = E (X (s)X (t)) = K (t, s) = 〈K (t, ·),K (s, ·)〉 .
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KL and RKHS

Theorem 5
If {X (t), t ∈ T } is a zero mean, second order Gaussian process with covariance
function E(X (s)X (t)) = K(s, t), then the sample path X (·) a.s. does not
belong to the RKHS of K.

Heuristic proof: recall that (for f , g ∈ L2) the inner product on the RKHS of K
is

〈f , g〉 =
∑
i

figi
λi

,

where λi are the eigenvalues of K . Define the truncated KL expansion

Xp(t) =

p∑
i=1

√
λiξiφi (t) ,

and note that

E
(
||Xp||2

)
= E

(
p∑

i=1

√
λiξi
√
λiξi

λi

)
=

p∑
i=1

E(ξ2i ) = p −→∞.
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Truncated KL expansion
Again, the KL expansion uses coefficients λi and functions φi that
satisfy the integral equation∫

T
K (s, t)φi (t)dt = λiφi (s) .

Theorem 6
Among all truncated expansions that take the form

Xp(t) =

p∑
i=1

√
lixiψi (t) , for

∫
ψi (t)ψj(t)dt = δij ,

the truncated KL expansion minimizes the integrated mean
squared error∫

E (e2p(t))dt , where ep(t) =
∑
i>p

√
lixiψi (t) .
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Truncated KL expansion

Proof. The expected squared error is

E(e2p(t)) = E

(∑
i>p

∑
j>p

√
li ljxixjψi (t)ψj(t)

)

= E

(∑
i>p

∑
j>p

ψi (t)ψj(t)

∫ ∫
X (t1)X (s1)ψi (t1)ψj(s1)ds1dt1

)

=
∑
i>p

∑
j>p

ψi (t)ψj(t)

∫ ∫
K(t1, s1)ψi (t1)ψj(s1)ds1dt1 .

The integrated expected squared error is then∫
E(e2p(t))dt =

∑
i>p

∑
j>p

(∫
ψi (t)ψj(t)dt

)∫ ∫
K(t1, s1)ψi (t1)ψj(s1)ds1dt1

=
∑
i>p

∫ ∫
K(t1, s1)ψi (t1)ψi (s1)ds1dt1 .
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Truncated KL expansion

Proof continued. We are interested in the optimization problem

min

∫
E(e2p(t))dt , a.s.

∫
ψi (t)ψj(t)dt = δij .

We therefore minimize the objective function

Q =
∑
i>p

∫ ∫
K(t1, s1)ψi (t1)ψi (s1)ds1dt1 − λi

(∫
ψ2

i (t)dt − 1

)
by taking the following functional derivative and setting equal to 0:

dQ

dψi
(t) = 2

∫
K(t, s)ψi (s)ds − 2λiψi (t) = 0 .

Thus, we obtain the Fredholm equation∫
T
K(t, s)φi (s)ds = λiφi (t) .
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Analytic example: Brownian motion on T = [0, 1]

Let s ≤ t, the covariance function for Brownian motion is

K (s, t) = E (BsBt) = E (Bs(Bt − Bs + Bs))

= E (B2
s ) = s .

Thus, the KL expansion corresponds to the integral equation∫
min(s, t)φ(s)ds = λφ(t)

or ∫ t

0
sφ(s)ds + t

∫ 1

t
φ(s)ds = λφ(t) ,

and thus φ(0) = 0.
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Analytic example: Brownian motion on T = [0, 1]
Taking the first derivative of both sides of∫ t

0
sφ(s)ds + t

∫ 1

t
φ(s)ds = λφ(t)

gives ∫ 1

t
φ(s)ds = λ

d

dt
φ(t) .

Taking the second derivative gives the ODE

−φ(t) = λ
d2

dt2
φ(t) ,

which is solved by

φ(t) = A sin(t/
√
λ) + B cos(t/

√
λ) .
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Analytic example: Brownian motion on T = [0, 1]

... which is solved by

φ(t) = A sin(t/
√
λ) + B cos(t/

√
λ) .

But φ(0) = 0, so B = 0 and φ(t) = A sin(t/
√
λ). To get

eigenvalues, substitute φ(t) into the first derivative equations:

A

∫ 1

t
sin(s/

√
λ)ds = Aλ cos(t/

√
λ)/
√
λ =⇒

A
√
λ
(

cos(t/
√
λ)− cos(1/

√
λ)
)

= A
√
λ cos(t/

√
λ) =⇒

cos(1/
√
λ) = 0 =⇒

λi =
4

(2i − 1)2π2
, i ≥ 1 .
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Analytic example: Brownian motion on T = [0, 1]

Use the orthogonality of φi to get A:

1 =

∫ 1

0
φ2i (t)dt = A2

∫ 1

0
sin2(t/

√
λ)dt

= A2

∫ 1

0
sin2

((
i − 1

2

)
πt

)
dt

= A2/2 .

Therefore, A =
√

2. Thus, the KL expansion is

B(t) =
√

2
∑
i≥1

2ξi
(2i − 1)π

sin

((
i − 1

2

)
πt

)
, ξi

iid∼ N(0, 1) .
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Analytic example: Brownian bridge on T = [0, 1]

Let B(t) be a standard Brownian motion and define the Brownian
bridge X (t) as

X (t) = B(t)− tB(1) .

The covariance function is K (s, t) = min(s, t)− st. To see this, let
s ≤ t:

K (s, t) = E (X (s)X (t)) = E ((Bs − sB1)(Bt − tB1))

= E (BsBt)− sE (B1Bt)− tE (BsB1) + stE (B2
1 )

= s − st − st + st = s − st .

So the integral equation is∫
(min(s, t)− st)φ(s)ds = λφ(t)
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Analytic example: Brownian bridge on T = [0, 1]

Differentiating the integral equation∫ 1

0
(min(s, t)− st)φ(s)ds = λφ(t)

w.r.t. t gives ∫ 1

t
φ(s)ds −

∫ 1

0
sφ(s) = λ

d

dt
φ(t) ,

and differentiating again gives

−φ(t) = λ
d2

dt2
φ(t) .

Just as with the standard Brownian motion, assuming φ(0) = 0
results in φ(t) = A sin(t/

√
λ).
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Analytic example: Brownian bridge on T = [0, 1]

Substituting φ(t) = A sin(t/
√
λ) into the first derivative equation∫ 1

t

φ(s)ds −
∫ 1

0

sφ(s) = λ
d

dt
φ(t)

gives

A

∫ 1

t

sin(s/
√
λ)ds − A

∫ 1

0

s sin(s/
√
λ)ds = Aλ cos(t/

√
λ)/
√
λ

√
λ
(

cos(t/
√
λ)− cos(1/

√
λ)
)
−

λ sin(1/
√
λ) +

√
λ cos(1/

√
λ) =

√
λ cos(t/

√
λ)

sin(1/
√
λ) = 0

λi =
1

i2π2
, i ≥ 1 .
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Analytic example: Brownian bridge on T = [0, 1]

Again, we use orthonormality of φi to solve for A:

1 = A2

∫ 1

0
sin2(s/

√
λi )ds = A2

∫ 1

0
sin2(iπs)ds =

A2

2
.

Again, we have A =
√

2, and the KL expansion for the Brownian
bridge may be written

X (t) =
∑
i≥1

√
λiφi (t)ξi

=
√

2
∑
i≥1

ξi
πi

sin(iπt) , ξi
iid∼ N(0, 1) .
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