Stochastic Processes: Lecture 3

Andrew J. Holbrook

UCLA Biostatistics 270
Spring 2022

Hilbert space

A Hilbert space H is an inner product space that is also a complete metric space w.r.t. the distance function

$$
d(x, y)=\|x-y\|=\sqrt{\langle x-y, x-y\rangle}
$$

induced by the inner product $\langle\cdot, \cdot\rangle$. For $x, y \in H$, this inner product satisfies

1. symmetry, i.e., $\langle x, y\rangle=\langle y, x\rangle$,
2. linearity, i.e., $\left\langle a x_{1}+b x_{2}, y\right\rangle=a\left\langle x_{1}, y\right\rangle+b\left\langle x_{2}, y\right\rangle$,
3. positive definiteness, i.e.,

$$
\begin{array}{ll}
\langle x, x\rangle>0, & x \neq 0 \\
\langle x, x\rangle=0, & x=0 .
\end{array}
$$

L^{2}-space

For a measure space X, a function $f: X \rightarrow \mathbb{R}$ is square integrable if

$$
\int_{X} f(x)^{2} d x<\infty
$$

The set of square integrable functions on X equipped with the inner product

$$
\left\langle f_{1}, f_{2}\right\rangle=\int_{X} f_{1}(x) f_{2}(x) d x
$$

is a Hilbert space.

RKHS

A Hilbert space is a reproducing kernel Hilbert space H, if for every function $f \in H$ defined on X, there exists a function $K: X \times X \rightarrow \mathbb{R}$, such that

1. For all y, as a function of $x, K(x, y) \in H$
2. Reproducing property: for all $x \in X$,

$$
f(x)=\langle K(\cdot, x), f(\cdot)\rangle
$$

Function $K(x, y)$ is the reproducing kernel of the space H.

Symmetry

Proposition 1
A reproducing kernel $K(\cdot, \cdot)$ is symmetric.
Proof.

$$
K(x, y)=\langle K(\cdot, x), K(\cdot, y)\rangle=\langle K(\cdot, y), K(\cdot, x)\rangle=K(y, x)
$$

Uniqueness of K

Proposition 2

If a reproducing kernel K exists, it is unique.

Proof.

Assume there exists another reproducing kernel K^{\prime}. Then

$$
\begin{aligned}
0 & \leq\left\|K(\cdot, x)-K^{\prime}(\cdot, x)\right\|^{2} \\
& =\left\langle K(\cdot, x)-K^{\prime}(\cdot, x), K(\cdot, x)-K^{\prime}(\cdot, x)\right\rangle \\
& =\left\langle K(\cdot, x)-K^{\prime}(\cdot, x), K(\cdot, x)\right\rangle-\left\langle K(\cdot, x)-K^{\prime}(\cdot, x), K^{\prime}(\cdot, x)\right\rangle \\
& =\langle K(x, x)-K(x, x)\rangle-\left\langle K^{\prime}(x, x)-K^{\prime}(x, x)\right\rangle=0 .
\end{aligned}
$$

Positive definiteness

Proposition 3
A reproducing kernel K is positive definite.
Proof.
For any $y_{1}, \ldots, y_{n} \in X$ and a_{1}, \ldots, a_{n},

$$
\begin{aligned}
\sum_{i} \sum_{j} K\left(y_{i}, y_{j}\right) a_{i} a_{j} & =\sum_{i} \sum_{j}\left\langle K\left(\cdot, y_{i}\right), K\left(\cdot, y_{j}\right)\right\rangle a_{i} a_{j} \\
& =\left\langle\sum_{i} a_{i} K\left(\cdot, y_{i}\right), \sum_{j} a_{j} K\left(\cdot, y_{j}\right)\right\rangle \\
& =\left\|\sum_{i} a_{i} K\left(\cdot, y_{i}\right)\right\|^{2} \geq 0
\end{aligned}
$$

One-to-one relationship

Theorem 1 (Moore-Aronszajn theorem)
To every RKHS H there exists a unique symmetric, positive definite function $K(\cdot, \cdot)$. For every symmetric, positive definite function $K(\cdot, \cdot)$ there exists a unique RKHS H.

For an RKHS H, we have shown uniqueness, symmetry and positive definiteness of $K(\cdot, \cdot)$. For a symmetric, positive definite $K(\cdot, \cdot)$, let $H_{0}=\operatorname{span}\left\{K_{x}:=K(x, \cdot), x \in X\right\}$. Define the inner product on H_{0}

$$
\left\langle\sum_{i=1}^{n} a_{i} K_{x_{i}}, \sum_{j=1}^{m} b_{j} K_{x_{j}}\right\rangle_{H_{0}}=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} b_{j} K\left(x_{i}, x_{j}\right)
$$

and note it is symmetric, non-degenerate and satisfies $\left\langle K_{x}, K_{y}\right\rangle_{H_{0}}=K(x, y)$. Let H be the completion of H_{0}, having functions

$$
f(x)=\sum_{i=1}^{\infty} a_{i} K_{x_{i}}(x) \text { for which } \lim _{n \rightarrow \infty} \sup _{p \geq 0}\left\|\sum_{i=n}^{n+p} a_{i} K_{x_{i}}\right\|_{H_{0}}^{2}
$$

One-to-one relationship

The reproducing property holds on this completion:

$$
\left\langle f, K_{x}\right\rangle_{H}=\sum_{i=1}^{\infty} a_{i}\left\langle K_{x_{i}}, K_{x}\right\rangle_{H_{0}}=\sum_{i=1}^{\infty} K\left(x_{i}, x\right)=f(x) .
$$

To prove uniqueness, let G be another Hilbert space on which K is the reproducing kernel. Then

$$
\left\langle K_{x}, K_{y}\right\rangle_{G}=K(x, y)=\left\langle K_{x}, K_{y}\right\rangle_{H} .
$$

By linearity, $\langle\cdot, \cdot\rangle_{G}=\langle\cdot, \cdot\rangle_{H}$ on H_{0}, so $H_{0} \subset G$. But G is complete, so it contains H, the completion of H_{0}. Finally, we need to show $G \subset H$. Let $f \in G$. Because $H \subset G$ and closed, $f=f_{H}+f_{H^{\perp}}$. Then

$$
f(x)=\left\langle K_{x}, f\right\rangle_{G}=\left\langle K_{x}, f_{H^{\perp}}\right\rangle_{G}+\left\langle K_{x}, f_{H}\right\rangle_{G}=\left\langle K_{x}, f_{H}\right\rangle_{G}=\left\langle K_{x}, f_{H}\right\rangle_{H}=f_{H}(x)
$$

where we use the fact that $K_{x} \in H$.

Roughness of RKHS

Proposition 4
Norm convergence implies pointwise convergence in an RKHS H.
Proof.
For any sequence $f_{n} \in H$,

$$
\left|f_{n}(x)-f(x)\right|=\left|\left\langle K(\cdot, x), f_{n}(\cdot)-f(\cdot)\right\rangle\right| \leq\|K(\cdot, x)\|\left\|f_{n}(\cdot)-f(\cdot)\right\|
$$

Roughness of RKHS

L^{2} is rougher than an RKHS: norm convergence does not imply pointwise convergence. Consider $L^{2}([0,1])$ and the function

$$
g_{n}(x)=x^{n}
$$

g_{n} converges to $g(x)=0$ in norm:

$$
\left\|g_{n}\right\|^{2}=\int_{0}^{1} x^{2 n} d x=\frac{1}{2 n+1} \rightarrow 0
$$

But $g_{n}(1)=1 \neq 0$.

Mercer's theorem

Let $K(\cdot, \cdot): X \times X \rightarrow \mathbb{R}$ be a symmetric function and define the integral operator $T_{K}: L^{2}(X) \rightarrow L^{2}(X)$

$$
T_{K} f(\cdot)=\int K(\cdot, x) f(x) d x
$$

T_{K} is positive definite if for all $f \in L^{2},\left\langle f, T_{K} f\right\rangle>0$.
Theorem 2
If K is continuous and T_{K} is positive definite, then T_{K} has eigenfunctions $\phi_{i} \in L^{2}\left(\left\|\phi_{i}\right\|=1\right)$ with eigenvalues $\lambda_{i}>0$ and for all $x, y \in X$,

$$
K(x, y)=\sum_{i=1}^{\infty} \lambda_{i} \phi_{i}(x) \phi_{i}(y)
$$

Fourier decompositions and RKHS

Theorem 3
Let $K(\cdot, \cdot)$ be an L^{2} kernel. For all $f \in L^{2}$, define the Fourier coefficients as

$$
f_{i}=\int f(x) \phi_{i}(x) d x
$$

For all $f, g \in L^{2}$ the inner product on the RKHS of K is

$$
\langle f, g\rangle=\sum_{i} \frac{f_{i} g_{i}}{\lambda_{i}},
$$

and $f \in$ RKHS if

$$
\|f\|^{2}=\sum_{i} \frac{f_{i}^{2}}{\lambda_{i}}<\infty
$$

Fourier decompositions and RKHS

Proof.

The Fourier expansions for $f(\cdot)$ and $K(x, \cdot)$ are

$$
f(\cdot)=\sum_{i} f_{i} \phi_{i}(\cdot) \quad \text { and } \quad K(x, \cdot)=\sum_{i} \lambda_{i} \phi_{i}(x) \phi_{i}(\cdot) .
$$

Then the above inner product satisfies

$$
\langle K(\cdot, x), f(\cdot)\rangle=\sum_{i} \frac{f_{i} \lambda_{i} \phi_{i}(x)}{\lambda_{i}}=\sum_{i} f_{i} \phi_{i}(x)=f(x)
$$

so $K(\cdot, x)$ is a reproducing kernel and has corresponding norm
$\|f\|^{2}=\sum_{i} f_{i}^{2} / \lambda_{i}$.

Karhunen-Loeve

Let $\{X(t), t \in \mathcal{T}\}$ be a zero mean, second order $\left(E\left(X_{t}^{2}\right)<\infty\right)$ stochastic process. Its covariance function $E(X(s) X(t))=K(s, t)$ is continuous.
Theorem 4
Assume that λ_{i} and ϕ_{i} satisfy the following equation:

$$
\int_{\mathcal{T}} K(s, t) \phi_{i}(t) d t=\lambda_{i} \phi_{i}(s)
$$

where $\left\{\phi_{i}, i \in \mathbb{N}\right\}$ are orthogonal eigenfunctions in L^{2} and $\left\{\lambda_{i}, i \in \mathbb{N}\right\}$ are eigenvalues. Furthermore, specify

$$
\xi_{i}=\frac{1}{\sqrt{\lambda_{i}}} \int_{\mathcal{T}} X(t) \phi_{i}(t) d t
$$

Then,

$$
X(t)=\sum_{i=1}^{\infty} \sqrt{\lambda_{i}} \xi_{i} \phi_{i}(t)
$$

as the following holds uniformly:

$$
\lim _{p \rightarrow \infty} E\left(X(t)-\sum_{i=1}^{p} \sqrt{\lambda_{i}} \xi_{i} \phi_{i}(t)\right)^{2}=0
$$

Karhunen-Loeve

Theorem 4 (cont.)
Conversely, if $X(t)=\sum_{i=1}^{\infty} \sqrt{\lambda_{i}} \xi_{i} \phi_{i}(t)$ for $\left\{\xi_{i}\right\} \stackrel{i i d}{\sim}(0,1)$, then

$$
\int_{\mathcal{T}} K(s, t) \phi_{i}(t) d t=\lambda_{i} \phi_{i}(s) .
$$

Proof.
We'll use the whiteboard for this one.

KL and RKHS

Let $\{X(t), t \in \mathcal{T}\}$ be a zero mean, second order $\left(E\left(X_{t}^{2}\right)<\infty\right)$ Gaussian process with covariance function $E(X(s) X(t))=K(s, t)$. When equipped with the covariance as inner product, the space

$$
H_{x}=\operatorname{span}\{X(t), t \in \mathcal{T}\}
$$

is isometrically isomorphic to the RKHS of K. If $X_{m}, X_{n} \in H_{X}$, i.e.,

$$
X_{m}=\sum_{i} a_{i} X\left(t_{i}\right), \quad X_{n}=\sum_{i} b_{i} X\left(t_{i}\right),
$$

then $\left\langle X_{m}, X_{n}\right\rangle=E\left(X_{m} X_{n}\right)$ is a valid inner product. The spaces are isometrically isomorphic because

$$
\langle X(s), X(t)\rangle=E(X(s) X(t))=K(t, s)=\langle K(t, \cdot), K(s, \cdot)\rangle .
$$

KL and RKHS

Theorem 5

If $\{X(t), t \in \mathcal{T}\}$ is a zero mean, second order Gaussian process with covariance function $E(X(s) X(t))=K(s, t)$, then the sample path $X(\cdot)$ a.s. does not belong to the RKHS of K.

Heuristic proof: recall that (for $f, g \in L^{2}$) the inner product on the RKHS of K is

$$
\langle f, g\rangle=\sum_{i} \frac{f_{i} g_{i}}{\lambda_{i}},
$$

where λ_{i} are the eigenvalues of K. Define the truncated KL expansion

$$
X_{p}(t)=\sum_{i=1}^{p} \sqrt{\lambda_{i}} \xi_{i} \phi_{i}(t)
$$

and note that

$$
E\left(\left\|X_{p}\right\|^{2}\right)=E\left(\sum_{i=1}^{p} \frac{\sqrt{\lambda_{i}} \xi_{i} \sqrt{\lambda_{i}} \xi_{i}}{\lambda_{i}}\right)=\sum_{i=1}^{p} E\left(\xi_{i}^{2}\right)=p \longrightarrow \infty
$$

Truncated KL expansion

Again, the KL expansion uses coefficients λ_{i} and functions ϕ_{i} that satisfy the integral equation

$$
\int_{\mathcal{T}} K(s, t) \phi_{i}(t) d t=\lambda_{i} \phi_{i}(s) .
$$

Theorem 6
Among all truncated expansions that take the form

$$
X_{p}(t)=\sum_{i=1}^{p} \sqrt{l_{i}} x_{i} \psi_{i}(t), \quad \text { for } \quad \int \psi_{i}(t) \psi_{j}(t) d t=\delta_{i j}
$$

the truncated KL expansion minimizes the integrated mean squared error

$$
\int E\left(e_{p}^{2}(t)\right) d t, \quad \text { where } \quad e_{p}(t)=\sum_{i>p} \sqrt{l_{i}} x_{i} \psi_{i}(t)
$$

Truncated KL expansion

Proof. The expected squared error is

$$
\begin{aligned}
E\left(e_{p}^{2}(t)\right) & =E\left(\sum_{i>p} \sum_{j>p} \sqrt{I_{i} I_{j}} x_{i} x_{j} \psi_{i}(t) \psi_{j}(t)\right) \\
& =E\left(\sum_{i>p} \sum_{j>p} \psi_{i}(t) \psi_{j}(t) \iint X\left(t_{1}\right) X\left(s_{1}\right) \psi_{i}\left(t_{1}\right) \psi_{j}\left(s_{1}\right) d s_{1} d t_{1}\right) \\
& =\sum_{i>p} \sum_{j>p} \psi_{i}(t) \psi_{j}(t) \iint K\left(t_{1}, s_{1}\right) \psi_{i}\left(t_{1}\right) \psi_{j}\left(s_{1}\right) d s_{1} d t_{1}
\end{aligned}
$$

The integrated expected squared error is then

$$
\begin{aligned}
\int E\left(e_{p}^{2}(t)\right) d t & =\sum_{i>p} \sum_{j>p}\left(\int \psi_{i}(t) \psi_{j}(t) d t\right) \iint K\left(t_{1}, s_{1}\right) \psi_{i}\left(t_{1}\right) \psi_{j}\left(s_{1}\right) d s_{1} d t_{1} \\
& =\sum_{i>p} \iint K\left(t_{1}, s_{1}\right) \psi_{i}\left(t_{1}\right) \psi_{i}\left(s_{1}\right) d s_{1} d t_{1}
\end{aligned}
$$

Truncated KL expansion

Proof continued. We are interested in the optimization problem

$$
\min \int E\left(e_{p}^{2}(t)\right) d t, \quad \text { a.s. } \quad \int \psi_{i}(t) \psi_{j}(t) d t=\delta_{i j} .
$$

We therefore minimize the objective function

$$
Q=\sum_{i>p} \iint K\left(t_{1}, s_{1}\right) \psi_{i}\left(t_{1}\right) \psi_{i}\left(s_{1}\right) d s_{1} d t_{1}-\lambda_{i}\left(\int \psi_{i}^{2}(t) d t-1\right)
$$

by taking the following functional derivative and setting equal to 0 :

$$
\frac{d Q}{d \psi_{i}}(t)=2 \int K(t, s) \psi_{i}(s) d s-2 \lambda_{i} \psi_{i}(t)=0
$$

Thus, we obtain the Fredholm equation

$$
\int_{\mathcal{T}} K(t, s) \phi_{i}(s) d s=\lambda_{i} \phi_{i}(t)
$$

Analytic example: Brownian motion on $\mathcal{T}=[0,1]$

Let $s \leq t$, the covariance function for Brownian motion is

$$
\begin{aligned}
K(s, t) & =E\left(B_{s} B_{t}\right)=E\left(B_{s}\left(B_{t}-B_{s}+B_{s}\right)\right) \\
& =E\left(B_{s}^{2}\right)=s
\end{aligned}
$$

Thus, the KL expansion corresponds to the integral equation

$$
\int \min (s, t) \phi(s) d s=\lambda \phi(t)
$$

or

$$
\int_{0}^{t} s \phi(s) d s+t \int_{t}^{1} \phi(s) d s=\lambda \phi(t)
$$

and thus $\phi(0)=0$.

Analytic example: Brownian motion on $\mathcal{T}=[0,1]$

Taking the first derivative of both sides of

$$
\int_{0}^{t} s \phi(s) d s+t \int_{t}^{1} \phi(s) d s=\lambda \phi(t)
$$

gives

$$
\int_{t}^{1} \phi(s) d s=\lambda \frac{d}{d t} \phi(t) .
$$

Taking the second derivative gives the ODE

$$
-\phi(t)=\lambda \frac{d^{2}}{d t^{2}} \phi(t)
$$

which is solved by

$$
\phi(t)=A \sin (t / \sqrt{\lambda})+B \cos (t / \sqrt{\lambda}) .
$$

Analytic example: Brownian motion on $\mathcal{T}=[0,1]$

... which is solved by

$$
\phi(t)=A \sin (t / \sqrt{\lambda})+B \cos (t / \sqrt{\lambda}) .
$$

But $\phi(0)=0$, so $B=0$ and $\phi(t)=A \sin (t / \sqrt{\lambda})$. To get eigenvalues, substitute $\phi(t)$ into the first derivative equations:

$$
\begin{aligned}
A \int_{t}^{1} \sin (s / \sqrt{\lambda}) d s & =A \lambda \cos (t / \sqrt{\lambda}) / \sqrt{\lambda} \\
A \sqrt{\lambda}(\cos (t / \sqrt{\lambda})-\cos (1 / \sqrt{\lambda})) & =A \sqrt{\lambda} \cos (t / \sqrt{\lambda}) \\
\cos (1 / \sqrt{\lambda}) & =0 \\
\lambda_{i} & =\frac{4}{(2 i-1)^{2} \pi^{2}}, \quad i \geq 1 .
\end{aligned}
$$

Analytic example: Brownian motion on $\mathcal{T}=[0,1]$

Use the orthogonality of ϕ_{i} to get A :

$$
\begin{aligned}
1=\int_{0}^{1} \phi_{i}^{2}(t) d t & =A^{2} \int_{0}^{1} \sin ^{2}(t / \sqrt{\lambda}) d t \\
& =A^{2} \int_{0}^{1} \sin ^{2}\left(\left(i-\frac{1}{2}\right) \pi t\right) d t \\
& =A^{2} / 2
\end{aligned}
$$

Therefore, $A=\sqrt{2}$. Thus, the KL expansion is

$$
B(t)=\sqrt{2} \sum_{i \geq 1} \frac{2 \xi_{i}}{(2 i-1) \pi} \sin \left(\left(i-\frac{1}{2}\right) \pi t\right), \quad \xi_{i} \stackrel{i i d}{\sim} N(0,1)
$$

Analytic example: Brownian bridge on $\mathcal{T}=[0,1]$

Let $B(t)$ be a standard Brownian motion and define the Brownian bridge $X(t)$ as

$$
X(t)=B(t)-t B(1)
$$

The covariance function is $K(s, t)=\min (s, t)-s t$. To see this, let $s \leq t$:

$$
\begin{aligned}
K(s, t) & =E(X(s) X(t))=E\left(\left(B_{s}-s B_{1}\right)\left(B_{t}-t B_{1}\right)\right) \\
& =E\left(B_{s} B_{t}\right)-s E\left(B_{1} B_{t}\right)-t E\left(B_{s} B_{1}\right)+s t E\left(B_{1}^{2}\right) \\
& =s-s t-s t+s t=s-s t
\end{aligned}
$$

So the integral equation is

$$
\int(\min (s, t)-s t) \phi(s) d s=\lambda \phi(t)
$$

Analytic example: Brownian bridge on $\mathcal{T}=[0,1]$

Differentiating the integral equation

$$
\int_{0}^{1}(\min (s, t)-s t) \phi(s) d s=\lambda \phi(t)
$$

w.r.t. t gives

$$
\int_{t}^{1} \phi(s) d s-\int_{0}^{1} s \phi(s)=\lambda \frac{d}{d t} \phi(t)
$$

and differentiating again gives

$$
-\phi(t)=\lambda \frac{d^{2}}{d t^{2}} \phi(t)
$$

Just as with the standard Brownian motion, assuming $\phi(0)=0$ results in $\phi(t)=A \sin (t / \sqrt{\lambda})$.

Analytic example: Brownian bridge on $\mathcal{T}=[0,1]$

Substituting $\phi(t)=A \sin (t / \sqrt{\lambda})$ into the first derivative equation

$$
\int_{t}^{1} \phi(s) d s-\int_{0}^{1} s \phi(s)=\lambda \frac{d}{d t} \phi(t)
$$

gives

$$
\begin{aligned}
& A \int_{t}^{1} \sin (s / \sqrt{\lambda}) d s-A \int_{0}^{1} s \sin (s / \sqrt{\lambda}) d s=A \lambda \cos (t / \sqrt{\lambda}) / \sqrt{\lambda} \\
& \sqrt{\lambda}(\cos (t / \sqrt{\lambda})-\cos (1 / \sqrt{\lambda}))- \\
& \lambda \sin (1 / \sqrt{\lambda})+\sqrt{\lambda} \cos (1 / \sqrt{\lambda})=\sqrt{\lambda} \cos (t / \sqrt{\lambda}) \\
& \sin (1 / \sqrt{\lambda})=0 \\
& \lambda_{i}=\frac{1}{i^{2} \pi^{2}}, \quad i \geq 1
\end{aligned}
$$

Analytic example: Brownian bridge on $\mathcal{T}=[0,1]$

Again, we use orthonormality of ϕ_{i} to solve for A :

$$
1=A^{2} \int_{0}^{1} \sin ^{2}\left(s / \sqrt{\lambda_{i}}\right) d s=A^{2} \int_{0}^{1} \sin ^{2}(i \pi s) d s=\frac{A^{2}}{2} .
$$

Again, we have $A=\sqrt{2}$, and the KL expansion for the Brownian bridge may be written

$$
\begin{aligned}
X(t) & =\sum_{i \geq 1} \sqrt{\lambda_{i}} \phi_{i}(t) \xi_{i} \\
& =\sqrt{2} \sum_{i \geq 1} \frac{\xi_{i}}{\pi i} \sin (i \pi t), \quad \xi_{i} \stackrel{i i d}{\sim} N(0,1) .
\end{aligned}
$$

