Stochastic Processes: Lecture 4

Andrew J. Holbrook

UCLA Biostatistics 270

Spring 2022

Point processes

- A point process is a random list of points $T_i \in \mathcal{T} \subset \mathbb{R}^D$.
- The total number of points $N(\mathcal{T})$ may be fixed or random.
- For $A \subset \mathcal{T}$, let N(A) be the total number of points in A:

$$N(A) = \sum_{i=1}^{N(\mathcal{T})} \mathbb{1}\{T_i \in A\}.$$

We are interested in *non-explosive* point processes, for which

$$\Pr(N(A) < \infty) = 1$$
 when $\operatorname{vol}(A) < \infty$.

Poisson processes

▶ The points $T_i \in T$ follow a homogeneous poisson process with intensity $\lambda > 0$ if

 $N(A_j) \stackrel{\perp}{\sim} \mathsf{Pois}(\lambda \cdot \mathsf{vol}(A_j))$

for disjoint sets $A_j \subset \mathcal{T}$ that satisfy $vol(A_j) < \infty$.

• Define
$$\lambda(t):\mathcal{T} o [0,\infty)$$
 so that

$$\int_A \lambda(t) dt < \infty \quad ext{whenever} \quad ext{vol}(A) < \infty \, .$$

Then for a non-homogeneous point process on ${\mathcal T}$ with intensity function $\lambda(t)$

$$N(A_j) \stackrel{\perp}{\sim} \mathsf{Pois}\left(\int_{A_j} \lambda(t) dt\right)$$

for disjoint sets $A_j \subset \mathcal{T}$ that satisfy $vol(A_j) < \infty$.

A sampling technique

Theorem 1 Let T_i be the points of a Poisson process on \mathcal{T} with intensity function $\lambda(t) \ge 0$, where $\Lambda(\mathcal{T}) = \int_{\mathcal{T}} \lambda(t) dt$. Then T_i can be sampled by

- 1. generating $N(\mathcal{T}) \sim \text{Pois}(\Lambda(\mathcal{T}))$ and
- 2. generating $N(\mathcal{T})$ independent T_i with probabilities

$$extsf{Pr}(extsf{T}_i \in A) = rac{1}{\Lambda(\mathcal{T})}\int_A \lambda(t)dt\,.$$

A sampling technique

Proof.
For
$$J \ge 1$$
, let A_1, \ldots, A_J be disjoint subsets of \mathcal{T} and define
 $A_0 = \{t \in \mathcal{T} | t \notin \bigcup_{j=1}^J A_j\}$. Let $n_j \ge 0$ for $j = 1, \ldots, J$. Let
 $P_* = \Pr(N(A_1) = n_1, \ldots, N(A_J) = n_J)$
 $= \sum_{n_0=0}^{\infty} \Pr(N(A_0) = n_0, N(A_1) = n_1, \ldots, N(A_J) = n_J)$.

Set $n = n_0 + n_1 + \cdots + n_J$. Under this sampling scheme:

$$P_* = \frac{n!}{n_0! n_1! \dots n_J!} \sum_{n_0=0}^{\infty} \frac{e^{-\Lambda(\mathcal{T})} \Lambda(\mathcal{T})^n}{n!} \prod_{j=0}^J \left(\frac{\Lambda(A_j)}{\Lambda(\mathcal{T})}\right)^{n_j}$$
$$= \sum_{n_0=0}^{\infty} \prod_{j=0}^J \frac{e^{-\Lambda(A_j)} \Lambda(A_j)^{n_j}}{n_j!} = \prod_{j=1}^J \frac{e^{-\Lambda(A_j)} \Lambda(A_j)^{n_j}}{n_j!} .$$

A sampling technique

Corollary 1

Let T_i be the points of a homogeneous Poisson process on \mathcal{T} with intensity $\lambda > 0$, where $vol(\mathcal{T}) < \infty$. Then we may sample the process by

- 1. generating $N(\mathcal{T}) \sim \text{Pois}(\Lambda(\mathcal{T}))$ and
- 2. generating $T_i \stackrel{iid}{\sim} Uni(\mathcal{T})$, $i = 1, \ldots, N(\mathcal{T})$.

Proof.

Apply the Theorem with constant $\lambda(t)$. Then

$$\Pr(T_i \in A) = \frac{\lambda \int_A dt}{\lambda \int_T dt} = \operatorname{vol}(A)/\operatorname{vol}(T).$$

Poisson processes on $[0,\infty)$

A Poisson process on $\left[0,\infty\right)$ can be represented by the counting function

$$N(t) = N([0, t]) = \sum_{i=1}^{\infty} 1\{T_i \leq t\}, \quad 0 \leq t < \infty.$$

The homogeneous Poisson process on $\left[0,\infty\right)$ is defined by these properties:

1.
$$N(0) = 0$$
;
2. for $0 \le s < t$, $N(t) - N(s) \sim \text{Pois}(\lambda(t - s))$;
3. for $0 = t_0 < t_1 < \cdots < t_m$, $N(t_i) - N(t_{i-1})$ are independent.

Simulation methods

It can be shown that

$$T_i - T_{i-1} \sim \exp(\lambda), \quad i \ge 1.$$
 (1)

A heuristic argument says: under (1) and for some x,

$$\Pr(T_i - T_{i+1} > x) = e^{-\lambda x},$$

but if $T_i - T_{i+1} \ge x$, then the interval $(T_{i-1}, T_{i-1} + x)$ has no events. Under the Poisson model, this probability is

$$f(0; \lambda x) = \frac{(\lambda x)^0 e^{-\lambda x}}{0!} = e^{-\lambda x}$$

The exponential spacings method simulates a homogeneous Poisson process thus: setting $T_0 = 0$,

$$T_i = T_{i-1} + E_i$$
, $E_i \stackrel{iid}{\sim} \exp(\lambda)$, $i \ge 1$.

Following previous discussion, we can also simulate a homogeneous Poisson process on [0, T] by

- 1. generating $N \sim \mathsf{Pois}(\lambda T)$,
- 2. generating $S_i \stackrel{iid}{\sim} \text{Uni}([0, T]), i = 1, \dots, N$, and
- 3. setting $T_i = S_{(i)}$.

Non-homogeneous Poisson process on $[0,\infty)$

The non-homogeneous Poisson process on $\left[0,\infty\right)$ has these properties:

1.
$$N(0) = 0;$$

2. for $0 \le s < t$, $N(t) - N(s) \sim \text{Pois}\left(\int_{s}^{t} \lambda(x) dx\right);$
3. for $0 = t_{0} < t_{1} < \cdots < t_{m}, N(t_{i}) - N(t_{i-1})$ are independent.

The cumulative rate function is $\Lambda(t) = \int_0^t \lambda(x) dx$. Start by assuming $\lim_{t\to\infty} \Lambda(t) = \infty$ and $\lambda(t) > 0$, $\forall t$. Define variables $Y_i = \Lambda(T_i)$ and the counting function

$$N_y(t) = \sum_{i=1}^{\infty} 1\{Y_i \le t\} = \sum_{i=1}^{\infty} 1\{T_i \le \Lambda^{-1}(t)\} = N(\Lambda_{-1}(t)).$$

Non-homogeneous Poisson process on $[0,\infty)$

Define variables $Y_i = \Lambda(T_i)$ and the counting function

$$N_y(t) = \sum_{i=1}^{\infty} 1\{Y_i \leq t\} = \sum_{i=1}^{\infty} 1\{T_i \leq \Lambda^{-1}(t)\} = N(\Lambda_{-1}(t)).$$

Note that $N_y(0) = 0$ and

$$egin{aligned} &\mathcal{N}_y(t)-\mathcal{N}_y(s) = \mathcal{N}(\Lambda^{-1}(t))-\mathcal{N}(\Lambda^{-1}(s)) \sim \operatorname{Pois}\left(\int_{\Lambda^{-1}(t)}^{\Lambda^{-1}(s)}\lambda(x)dx
ight) \ &= \operatorname{Pois}\left(\Lambda(\Lambda^{-1}(t))-\Lambda(\Lambda^{-1}(s))
ight) = \operatorname{Pois}(t-s)\,. \end{aligned}$$

Finally the increments of $N_y(t)$ are increments of $N(\Lambda^{-1}(t))$. Independence of the latter implies independence for the former. Therefore,

$$Y_i = \Lambda(T_i) \sim PP(1)$$
.

More exponential spacings

We have shown $Y_i = \Lambda(T_i) \sim PP(1)$. Setting $Y_0 = T_0 = 0$, we can therefore simulate T_i thus:

$$\begin{split} Y_i &= Y_{i-1} + E_i , \quad E_i \stackrel{iid}{\sim} \exp(1) , \quad i \geq 1 , \\ T_i &= \Lambda^{-1}(Y_i) = \Lambda^{-1}(\Lambda(T_{i-1}) + E_i) . \end{split}$$

Comments:

- If lim_{t→∞} Λ(t) = Λ₀, then Λ⁻¹(y) does not exists for y > Λ₀. If Λ(T_i) + E_i > Λ₀, then there is no T_{i+1} and the process stops.
- The algorithm is convenient when Λ and Λ⁻¹ are available in closed form.
- The algorithm works even when Λ takes finite jumps or is constant on some intervals by taking

$$\Lambda^{-1}(y) = \inf\{t \ge 0 | \Lambda(t) \ge y\}.$$

Thinning (rejection sampling for point processes)

Let $\widetilde{\lambda}(t) \geq \lambda(t)$ and assume we can sample from a Poisson process on \mathcal{T} with $\widetilde{\lambda}$ for intensity function. The following algorithm generates $(T_1, \ldots, T_N) \sim NHPP(\mathcal{T}, \lambda)$:

1. Generate
$$(\widetilde{T}_1, \ldots, \widetilde{T}_{\widetilde{N}})) \sim NHPP(\mathcal{T}, \widetilde{\lambda});$$

2. if
$$\widetilde{N} > 0$$
, then for $i \in \{1, \dots, \widetilde{N}\}$:
2.1 draw $u_i \sim \text{Uni}(0, 1)$;

2.2 if $u_i < \rho(\widetilde{T}_i) = \lambda(\widetilde{T}_i)/\widetilde{\lambda}(\widetilde{T}_i)$, then $\widetilde{T}_i \in \{T_1, \ldots, T_N\}$.

Why thinning works

Let N(A) be the number of points T_i in a set A and $\widetilde{N}(A)$ be the analogue for points \widetilde{T}_i . Note that $\widetilde{N}(A) \sim \text{Pois}(\int_A \widetilde{\lambda}(t) dt)$. Then the probability a point in $\widetilde{T}_i \in A$ is accepted is

$$\rho(A) = \frac{\int_A \rho(t)\widetilde{\lambda}(t)dt}{\int_A \widetilde{\lambda}(t)dt} = \frac{\int_A \lambda(t)dt}{\int_A \widetilde{\lambda}(t)dt}$$

It holds that $N(A)|\widetilde{N}(A) \sim \mathsf{binom}(\widetilde{N}(A),
ho(A))$. Marginalizing over $\widetilde{N}(A)$ gives

$$N(A) \sim \mathsf{Pois}\left(
ho(A)\int_A \widetilde{\lambda}(t)dt
ight) = \mathsf{Pois}\left(\int_A \lambda(t)dt
ight)\,.$$

Independence of N on non-overlapping sets is inherited from N. Therefore $(T_1, \ldots, T_N) \sim NHPP(\mathcal{T}, \lambda)$. The temporal Hawkes process is a non-homogeneous Poisson process on $[0,\infty)$ with (conditional) intensity function given by

$$\lambda(t|T_k < t) = \lambda_0 + \sum_{T_K < t} g(t - T_k),$$

where g > 0 is a non-increasing *triggering function*. Because the intensity increases after an observation, the Hawkes process is referred to as *self-exciting* and is useful for modeling contagion.

Exponential decay

A common choice for g is the exponential decay function:

$$\lambda(t|T_k < t) = \lambda_0 + \alpha \sum_{T_K < t} e^{-\beta(t-T_k)}.$$

Figure 1: A Hawkes Process with Exponential Decaying Intensity (N_t, λ_t)

Dassios and Zhao, 2013

Exponential decay

A common choice for g is the exponential decay function:

$$\lambda(t|T_k < t) = \lambda_0 + \alpha \sum_{T_K < t} e^{-\beta(t-T_k)}$$

Exponential decay has pros and cons:

- Pros: exponential decay has computational benefits. Process simulation and likelihood computations are both O(N).
- Cons: the exponential rate of decay may be to fast for certain applications, precluding long-term dependencies.

We will return to linear-time computing for the exponential triggering kernel later.

Ogata's modified thinning algorithm

Algorithm 2 Generate a Hawkes process by thinning. 1: procedure HawkesByThinning $(T, \lambda^*(\cdot))$ 2: **require**: $\lambda^*(\cdot)$ non-increasing in periods of no arrivals. $\varepsilon \leftarrow 10^{-10}$ (some tiny value > 0). 3: 4: $P \leftarrow [1, t \leftarrow 0]$ 5: while t < T do Find new upper bound: 6: 7: $M \leftarrow \lambda^* (t + \varepsilon).$ 8: Generate next candidate point: 9: $E \leftarrow \operatorname{Exp}(M), t \leftarrow t + E.$ 10: Keep it with some probability: $U \leftarrow \text{Unif}(0, \hat{M}).$ 11: 12:if t < T and $U < \lambda^*(t)$ then 13: $P \leftarrow [P, t].$ end if 14: $15 \cdot$ end while 16: return P17: end procedure

Ogata's modified thinning algorithm

Conditional intensity and stochastic calculus

For the counting process N(t) with histories $\mathcal{H}(t)$, we can define our conditional intensity

$$\lambda(t) = \lim_{h \to 0} \frac{E(N(t+h) - N(t)|\mathcal{H}(t))}{h} = \frac{E(dN(t)|\mathcal{H}(t))}{dt}$$

and for a general Hawkes process we have

$$\lambda(t) = \lambda_0 + \int_0^t g(t-u) dN(u)$$

When g specifies exponential decay, this becomes

$$\lambda(t) = \lambda_0 + \alpha \int_0^t e^{-\beta(t-u)} dN(u) \,,$$

or

$$d\lambda(t) = \beta(\lambda_0 - \lambda(t))dt + \alpha dN(t).$$

Asymptotic normality of Hawkes process

Theorem 2 Assume $0 < n := \int_0^\infty g(s) ds < 1$ and $\int_0^\infty sg(s) ds < \infty$, then the number of HP arrivals in (0, t] is asymptotically normally distributed as $t \to \infty$, i.e.,

$$Pr\left(\frac{N(0,t]-\lambda_0t(1-n)^{-1}}{\sqrt{\lambda_0t(1-n)^{-3}}} < y\right) \longrightarrow \Phi(y).$$

Note that for the exponential Hawkes model we only have a CLT when $\alpha/\beta < 1:$

$$n = \int_0^\infty g(s) ds = \alpha \int_0^\infty e^{-\beta s} ds = \frac{\alpha}{\beta}$$

Stationarity and explosiveness

Again, let $n := \int_0^\infty g(s) ds$ and define

$$m(t) = E(\lambda(t)) = E\left(\lambda_0 + \int_0^t g(t-u)dN(u)\right)$$
$$= \lambda_0 + \int_0^t g(t-u) E(dN(u)).$$

But

$$\lambda(t) = \lim_{h \to 0} \frac{E(N(t+h) - N(t)|\mathcal{H}(t))}{h} = \frac{E(dN(t)|\mathcal{H}(t))}{dt},$$

so by iterated expectation

$$m(t) = E(\lambda(t)) = E\left(\frac{E(dN(t)|\mathcal{H}(t))}{dt}\right) = \frac{E(dN(t))}{dt}$$

and m(t)dt = E(dN(t)). Thus we obtain the recursion

$$m(t) = \lambda + \int_0^t g(t-s)m(s)ds = \lambda + \int_0^t m(t-s)g(s)ds$$

When $n < 1, \ g(t) o \lambda/(1-n)$, but when $n > 1, \ g(t)$ diverges to infinity.

More exponential Hawkes process

Definition 1 (Intensity-based)

A Hawkes process with exponentially decaying intensity is a Poisson process $N_t = \{T_k\}_{k=1,2,...}$ on \mathbb{R}_+ with non-negative \mathcal{F}_t -stochastic intensity

$$\lambda_t = \mathbf{a} + (\lambda_0 - \mathbf{a}) \mathbf{e}^{-\delta t} + \sum_{0 \le T_k < t} Y_k \mathbf{e}^{-\delta(t - T_k)}, \quad t \ge 0.$$

where:

- $\{\mathcal{F}_t\}_{t\geq 0}$ is a history of the process w.r.t.w. $\{\lambda_t\}_{t\geq 0}$ is adapted;
- $a \ge 0$ is the constant reversion level;
- $\lambda_0 > 0$ is the initial intensity at time t = 0;
- δ > 0 is the rate of exponential decay;
- {
 Y_k}_{k=1,2,...} are positive random variables that are i.i.d. with distribution function G(y);
- $\{T_k\}_{k=1,2,...}$ and $\{Y_k\}_{k=1,2,...}$ are mutually independent.

More exponential Hawkes process

Definition 2 (Cluster-based)

A Hawkes process with exponentially decaying intensity is a marked Poisson cluster process $C = \{T_i, Y_i\}_{i=1,2,...}$ with times $T_i \in \mathbb{R}_+$ and marks Y_i : the number of points in (0, t] is defined $N_t = N_{C(0,t]}$; the cluster centers of C are 'immigrants', the rest are 'offspring', and they share the following structure:

- ► the immigrants $I = \{T_m\}_{m=1,2,...}$ are distributed as an NHPP with rate $a + (\lambda_0 a)e^{-\delta t}$;
- ► the marks {Y_m}_{m=1,2,...} associated to immigrants I are i.i.d. Y_m ~ G(y) and are independent of the immigrants;
- each immigrant T_m generates one cluster C_m, and these clusters are independent;
- ▶ each cluster C_m is a random set formed by marked points of generations of order n = 0, 1, ... with the following branching structure
 - the immigrant and its mark (T_m, Y_m) are generation 0;
 - given generations 0, 1, ..., n in C_m each (T_j, Y_j) ∈ C_m of generation n generates are a Poisson process on (T_j, ∞) with intensity Y_j exp(-δ(t − T_j)), with Y_j ~ G independent.

• C consists of the union of all clusters, i.e., $C = \bigcup_{m=1,2,...} C_m$.

Cluster-based representation

The cluster-based or *branching process* definition is equivalent to the intensity-based definition.

- The cluster representation can be used to simulate a Hawkes process just as we have used the intensity representation to simulate.
- ▶ The equivalent representations hold beyond exponential HP.

Cluster-based representation

Explosion and cluster-based representation

Conditioned on knowing the number of children in a generation (say, D_1), the generation's arrival times are distributed i.i.d. with density $g(t - T_i)/n$. Note that for the exponential Hawkes process, we have

$$g(t-T_i)/n = \beta e^{-\beta(t-T_i)}$$

The expected total number of children in generation *i* is $E(D_i) = n^i$, so the expected total number of children for one individual is

$$E\left(\sum_{i=1}^{\infty}D_i\right)=\sum_{i=1}^{\infty}E(D_i)=\sum_{i=1}^{\infty}n^i=\left\{\begin{array}{cc}\frac{n}{1-n},&n<1\\\infty,&n\geq1\end{array}\right.$$

When n < 1, it is the ration between the number of descendants for one parent and the size of the entire family (including the parent):

$$\frac{E\left(\sum_{i=1}^{\infty} D_i\right)}{1+E\left(\sum_{i=1}^{\infty} D_i\right)} = \frac{\frac{n}{1-n}}{1+\frac{n}{1-n}} = \frac{\frac{n}{1-n}}{\frac{1}{1-n}} = n$$

therefore any HP event chosen at random is generated *exogenously* (an immigrant) with probability 1 - n or *endogenously* (a child) with probability n.

An incorrect cluster-based simulation algorithm

Algorithm 3 Generate a Hawkes process by clusters. 1: procedure HAWKESBYCLUSTERS $(T, \lambda, \alpha, \beta)$ 2: $P \leftarrow \{\}.$ 3. Immigrants: 4: $k \leftarrow \operatorname{Poi}(\lambda T)$ $C_1, C_2, \ldots, C_k \stackrel{i_i i.d.}{\longleftarrow} \text{Unif}(0, T).$ 5: Descendants: 6: $D_1, D_2, \ldots, D_k \stackrel{i.i.d.}{\leftarrow} \operatorname{Poi}(\alpha/\beta).$ 7: 8: for $i \leftarrow 1$ to k do if $D_i > 0$ then g. $E_1, E_2, \dots, E_{D_i} \stackrel{\text{i.i.d.}}{\longleftarrow} \operatorname{Exp}(\beta).$ $P \leftarrow P \cup \{C_i + E_1, \dots, C_i + E_{D_i}\}.$ 10: 11: 12: end if 13: end for Remove descendants outside [0, T]: 14: $P \leftarrow \{P_i : P_i \in P, P_i < T\}.$ 15: Add in immigrants and sort: 16:17: $P \leftarrow \text{Sort}(P \cup \{C_1, C_2, \dots, C_k\}),$ return P 18: 19: end procedure

More exponential Hawkes process

Definition 3 (Intensity-based)

A Hawkes process with exponentially decaying intensity is a Poisson process $N_t = \{T_k\}_{k=1,2,...}$ on \mathbb{R}_+ with non-negative \mathcal{F}_t -stochastic intensity

$$\lambda_t = \mathbf{a} + (\lambda_0 - \mathbf{a}) \mathbf{e}^{-\delta t} + \sum_{0 \le T_k < t} Y_k \mathbf{e}^{-\delta(t - T_k)}, \quad t \ge 0.$$

where:

- $\{\mathcal{F}_t\}_{t\geq 0}$ is a history of the process w.r.t.w. $\{\lambda_t\}_{t\geq 0}$ is adapted;
- $a \ge 0$ is the constant reversion level;
- $\lambda_0 > 0$ is the initial intensity at time t = 0;
- δ > 0 is the rate of exponential decay;
- {
 Y_k}_{k=1,2,...} are positive random variables that are i.i.d. with distribution function G(y);
- $\{T_k\}_{k=1,2,...}$ and $\{Y_k\}_{k=1,2,...}$ are mutually independent.

A fast simulation method

A simulation algorithm for one sample path $\{N_t, \lambda_t\}_{t=0,1,...}$ of a 1D exponential Hawkes process conditional on λ_0 and $N_0 = 0$, with jump distribution G and K jump times $\{T_1, \ldots, T_K\}$:

- 1. set the initial conditions $T_0 = 0$, $\lambda_{T_0^{\pm}} = \lambda_0 > a$, $N_0 = 0$ and $k \in \{0, 1, \dots, K 1\}$;
- 2. simulate the (k + 1)th inter-arrival time S_{k+1} by

$$S_{k+1} = \left\{ egin{array}{cc} S_{k+1}^{(1)} \wedge S_{k+1}^{(2)}\,, & D_{k+1} > 0 \ S_{k+1}^{(2)}\,, & D_{k+1} < 0 \end{array}
ight. ,$$

where

$$D_{k+1} = 1 + rac{\delta \ln U_1}{\lambda_{T_k^+} - a} \quad U_1 \sim U(0,1),$$

and

$$S_{k+1}^{(1)} = -rac{1}{\delta} \ln D_{k+1}\,, \quad S_{k+1}^{(2)} = -rac{1}{a} \ln U_2\,, \quad U_2 \sim U(0,1)\,;$$

A fast simulation method

3. record the (k + 1)th jump time

$$T_{k+1} = T_k + S_{k+1}$$
;

4. record the change in the intensity at time T_{k+1} by

$$\lambda_{\tau_{k+1}^+} = \lambda_{\tau_{k+1}^-} + Y_{k+1}, \quad Y_{k+1} \sim G,$$

where

$$\lambda_{\tau_{k+1}^-} = (\lambda_{\tau_k^+} - a) e^{-\delta(\tau_{k+1} - \tau_k)} + a;$$

5. record the change in the in process N_t by

$$N_{T_{k+1}^+} = N_{T_{k+1}^-} + 1.$$

Proof. On the whiteboard...

Multivariate Hawkes process

Consider the *D*-dimensional point process $\{N_t^{[d]}\}_{d=1}^D$, where $N_t^{[d]} \equiv \{T_k^{[d]}\}_{k=1,2,...}^k$ with the underlying intensity process

$$\lambda_t^{[d]} = a^{[d]} + \left(\lambda_0^{[d]} - a^{[d]}\right) e^{-\delta^{[d]}t} + \sum_{\ell=1}^D \sum_{T_k^{[\ell]} < t} Y_k^{[d,\ell]} e^{-\delta^{[d,\ell]}(t - T_k^{[\ell]})}$$

We call this process a *multivariate Hawkes process* or *mutually exciting Hawkes processes*. These can also be simulated using a similar algorithm but taking the next inter-arrival time as

$$S_{k+1} = \min\{S_{k+1}^{[1]}, \ldots, S_{k+1}^{[D]}\}.$$

Conditional intensity as hazard function

Given the history up until the last arrival u, $\mathcal{H}(u)$, define the conditional c.d.f. and p.d.f. of the next arrival time T_{k+1}

$$F(t|\mathcal{H}(u)) = \int_u^t \Pr(T_{k+1} \in [s, s+ds]|\mathcal{H}(u)) ds = \int_u^t f(s|\mathcal{H}(u)) ds.$$

The joint p.d.f. of a realization $\{t_1, t_2, \ldots, t_k\}$ is

$$f(t_1, t_2, \ldots, t_k) = \prod_{i=1}^k f(t_i | \mathcal{H}(t_{i-1})).$$

The shorthand notations $f^*(t) = f(t|\mathcal{H}(u))$ and $F^*(t) = F(t|\mathcal{H}(u))$ are common. The conditional intensity can be characterized as the hazard function

$$\lambda(t) = \frac{f^*(t)}{1 - F^*(t)}.$$

Hawkes process likelihood

Theorem 3

Let $N(\cdot)$ be a regular point process on [0, T] for some positive $T < \infty$ and let t_1, t_2, \ldots, t_k denote a realization of $N(\cdot)$ over [0, T]. Then the likelihood L of $N(\cdot)$ is expressible as

$$L = \left(\prod_{i=1}^k \lambda(t_i)\right) \exp\left(-\int_0^T \lambda(t) dt\right) = \left(\prod_{i=1}^k \lambda(t_i)\right) e^{-\Lambda(T)} dt$$

Hawkes process likelihood

Assume process observed to time of kth arrival. The joint density is

$$L=f(t_1,\ldots,t_k)=\prod_{i=1}^k f^*(t_i).$$

Rearrange hazard function definition of $\lambda(t)$

$$\lambda(t) = \frac{f^*(t)}{1 - F^*(t)} = \frac{\frac{dF^*(t)}{dt}}{1 - F^*(t)} = -\frac{d\log(1 - F^*(t))}{dt}$$

and integrate both sides over the interval (t_k, t)

$$-\int_{t_k}^t \lambda(u) du = \log(1 - F^*(t)) - \log(1 - F^*(t_k)).$$

But $F^*(t_k) = 0$ because $T_{k+1} > t_k$, so

$$\mathcal{F}^*(t) = 1 - \exp\left(-\int_{t_k}^t \lambda(u) du
ight) \quad ext{and} \quad f^*(t) = \lambda(t) \exp\left(-\int_{t_k}^t \lambda(u) du
ight) \,.$$

Hawkes process likelihood

So far, we have

$$L=f(t_1,\ldots,t_k)=\prod_{i=1}^k f^*(t_i)$$

and

$$\mathcal{F}^*(t) = 1 - \exp\left(-\int_{t_k}^t \lambda(u) du
ight) \quad ext{and} \quad f^*(t) = \lambda(t) \exp\left(-\int_{t_k}^t \lambda(u) du
ight) \,.$$

Now suppose the process is observed to some time $T > t_k$. Then the likelihood includes the probability of not observing anything on the interval $(t_k, T]$:

$$L = (1 - F^*(T)) \prod_{i=1}^k f^*(t_i) = \exp\left(-\int_{t_k}^T \lambda(u) du\right) \prod_{i=1}^k f^*(t_i)$$
$$= \left(\prod_{i=1}^k \lambda(t_i) \exp\left(-\int_{t_{i-1}}^{t_i} \lambda(u) du\right)\right) \exp\left(-\int_{t_k}^T \lambda(u) du\right)$$
$$= \left(\prod_{i=1}^k \lambda(t_i)\right) e^{-\Lambda(T)}.$$

Exponential Hawkes process likelihood

The log-likelihood for the interval $[0, t_k]$ can be written

$$\ell = -\Lambda(t_k) + \sum_{i=1}^k \log(\lambda(t_i)),$$

and $\Lambda(t_k)$ can be written

$$\Lambda(t_k) = \int_0^{t_1} \lambda(u) du + \sum_{i=1}^{k-1} \int_{t_i}^{t_{i+1}} \lambda(u) du.$$

For the exponential Hawkes process, this becomes

$$\begin{split} \Lambda(t_k) &= \int_0^{t_1} \lambda du + \sum_{i=1}^{k-1} \int_{t_i}^{t_{i+1}} \lambda + \sum_{t_j < u} \alpha e^{-\beta(u-t_j)} du \\ &= \lambda t_k + \alpha \sum_{i=1}^{k-1} \int_{t_i}^{t_{i+1}} \sum_{j=1}^{i} e^{-\beta(u-t_j)} du \\ &= \lambda t_k + \alpha \sum_{i=1}^{k-1} \sum_{j=1}^{i} \int_{t_i}^{t_{i+1}} e^{-\beta(u-t_j)} du \end{split}$$

Exponential Hawkes process likelihood

Continuing, we have

Λ

$$egin{aligned} \lambda(t_k) &= \lambda t_k + lpha \sum_{i=1}^{k-1} \sum_{j=1}^i \int_{t_i}^{t_{i+1}} e^{-eta(u-t_j)} du \ &= \lambda t_k - rac{lpha}{eta} \sum_{i=1}^{k-1} \sum_{j=1}^i \left(e^{-eta(t_{i+1}-t_j)} - e^{-eta(t_i-t_j)}
ight) \ &= \lambda t_k - rac{lpha}{eta} \sum_{i=1}^{k-1} \left(e^{-eta(t_k-t_i)} - e^{-eta(t_i-t_i)}
ight) \ &= \lambda t_k - rac{lpha}{eta} \sum_{i=1}^{k-1} \left(e^{-eta(t_k-t_i)} - e^{-eta(t_i-t_i)}
ight) \ &= \lambda t_k - rac{lpha}{eta} \sum_{i=1}^{k-1} \left(e^{-eta(t_k-t_i)} - 1
ight) . \end{aligned}$$

Thus, the log-likelihood can be written

$$\ell = -\lambda t_k + \sum_{i=1}^k \left(\log \left(\lambda + \alpha \sum_{j=1}^{i-1} e^{-\beta(t_i - t_j)} \right) + \frac{\alpha}{\beta} \left(e^{-\beta(t_k - t_i)} - 1 \right) \right)$$

Exponential Hawkes process likelihood

The log-likelihood

$$\ell = -\lambda t_k + \sum_{i=1}^k \left(\log \left(\lambda + \alpha \sum_{j=1}^{i-1} e^{-\beta(t_i - t_j)} \right) + \frac{\alpha}{\beta} \left(e^{-\beta(t_k - t_i)} - 1 \right) \right) \,.$$

has quadratic computational complexity $O(k^2)$, but a recursion turns it into linear complexity O(k). For i = 2, ..., k, let $A(i) = \sum_{j=1}^{i-1} e^{-\beta(t_i - t_j)}$. Then

$$\begin{split} \mathcal{A}(i) &= e^{-\beta t_i + \beta t_{i-1}} \sum_{j=1}^{i-1} e^{-\beta t_{i-1} + \beta t_j} = e^{-\beta (t_i - t_{i-1})} \left(1 + \sum_{j=1}^{i-2} e^{-\beta (t_{i-1} - \beta t_j)} \right) \\ &= e^{-\beta (t_i - t_{i-1})} \left(1 + \mathcal{A}(i-1) \right) \,. \end{split}$$

Letting A(1) = 0, the log-likelihood can be written

$$\ell = -\lambda t_k + \sum_{i=1}^k \left(\log \left(\lambda + lpha \mathcal{A}(i) \right) + rac{lpha}{eta} \left(e^{-eta(t_k - t_i)} - 1
ight)
ight)$$

Similar recursions are also available for the log-likelihood gradient.

Nonlinear Hawkes process

Letting $\Psi : \mathbb{R} \to \mathbb{R}_+$ be an arbitrary function, a nonlinear Hawkes process has conditional intensity function

$$\lambda(t) = \Psi\left(\int_0^t g(t-u)dN(u)
ight)\,.$$

The linear Hawkes process is a special case. One may incorporate inhibition by specifying, say,

$$\lambda(t) = \exp\left(\mu t - \int_0^t g(t-u) dN(u)\right) \,.$$

Recently, autoregressive neural networks (RNN, transformer NN) have been used to model the function Ψ .

Spatiotemporal Hawkes processes

Spatiotemporal Hawkes processes are useful for modeling earthquakes, wildfires, viral contagion and gun violence.

The conditional intensity models the rate of events at locations s ∈ X ⊂ ℝ^D:

$$\lambda(s,t|\mathcal{H}(t)) = \lim_{\Delta s, \Delta t \to 0} \frac{E\left(N\left(B(s,\Delta s) \times [t,t+\Delta t)\right)|\mathcal{H}(t)\right)}{|B(s,\Delta s)|\Delta t}$$

▶ For {(s₁, t₁),..., (s_k,..., t_k) observed, a spatiotemporal Hawkes process has conditional intensity

$$\lambda(s,t) = \mu(s) + \sum_{t_i < t} g(s - s_i, t - t_i),$$

where the triggering function g is non-negative.

The spatiotemporal HP also has a cluster process representation with mean number of children for each event

$$n=\int_X\int_0^T g(s,t)dsdt\,.$$

Spatiotemporal Hawkes processes

Reinhart, 2018

Spatiotemporal Hawkes process

The log-likelihood for the spatiotemporal Hawkes process takes a similar form to that of the temporal Hawkes process:

$$\ell = \sum_{i=1}^{k} \log \left(\lambda(s_i, t_i)\right) - \int_X \int_0^T \lambda(s, t) ds dt$$

 $= \sum_{i=1}^{k} \log \left(\mu(s) + \sum_{t_i < t} g(s_i - s_j, t_i - t_j)\right)$
 $- \int_X \int_0^T \mu(s) + \sum_{t_j < t} g(s - s_j, t - t_j) ds dt$

The double summation in the first term implies an $O(k^2)$ computational complexity for k observations. No linear-time recursion is known. In EM/MCMC, it can be helpful to use the (still $O(k^2)$) 'complete data likelihood'

$$\ell_c = \sum_{i=1}^k 1\{u_i = 0\} \log (\mu(s_i)) + \sum_{i=1}^k \sum_{j=1}^k 1\{u_i = j\} \log(g(s_i - s_j, t_i - t_j)) - \int_X \int_0^T \lambda(s, t) ds dt$$
 .

Simulating the spatiotemporal Hawkes process

- Ogata (1998) proposes a two-stage algorithm that (1) simulates the temporal HP obtained by integrating over space and (2) simulates from the spatial inhomogeneous PP for each timepoint.
- Zhuang, Ogata and Vere-Jones (2004) propose a cluster based algorithm.

Simulating the spatiotemporal Hawkes process

Again, define the branching number $n = \int_X \int_0^T g(s, t) ds dt$. The following algorithm simulates a sample path of a spatiotemporal Hawkes process.

- 1. Generate events from the background process with intensity $\mu(s)$ using a method for simulating NHPP (e.g., thinning). Call events $G^{(0)}$;
- 2. let *I* = 0;
- 3. For each event $i \in G^{(l)}$, simulate the number of offspring $O_i^{(l)} = N^{(i)} \sim Pois(n)$ and the position/time of each with the normalized g as distribution.

4. Let
$$G^{(l+1)} = \bigcup_{i \in G^{(l)}} O_i^{(l)}$$

5. If $G^{(l+1)}$ not empty, let l = l+1 and return to step 3. Otherwise, return $\bigcup_{j=0}^{l} G^{(j)}$.