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Point processes

» A point process is a random list of points T; € 7 C RP.
» The total number of points N(7) may be fixed or random.

» For AC T, let N(A) be the total number of points in A:

N(T)

N(A) = > 1{T; € A}.

i=1

» We are interested in non-explosive point processes, for which

Pr(N(A) < ) =1 when vol(A) <oco.



Poisson processes

» The points T; € T follow a homogeneous poisson process with intensity
A>0if

N(A;) ~ Pois() - vol(A/))

for disjoint sets A; C T that satisfy vol(A;) < oco.
» Define A\(t) : T — [0, 00) so that
/)\(t)dt < oo whenever vol(A) < co.
A
Then for a non-homogeneous point process on 7 with intensity function

A(t)
N(A;) ~ Pois ( / A(t)dt)

J

for disjoint sets A; C T that satisfy vol(A;) < oc.



A sampling technique

Theorem 1

Let T; be the points of a Poisson process on T with intensity

function \(t) > 0, where N(T) = [ A(t)dt. Then T; can be
sampled by

1. generating N(T) ~ Pois(A(T)) and
2. generating N(T') independent T; with probabilities

PHT: € A) = A(lT)/AA(t)dt.



A sampling technique

Proof.
For J > 1, let Ay, ..., A, be disjoint subsets of 7 and define
Av={te Tt ¢ U_ A} Let nj>0forj=1,...,J. Let

P. = PI’(N(Al) =nm,..., N(AJ) = nJ)
= Pr(N(A¢) = no, N(A1) = m,...,N(A)) = nj).
ng=0
Set n = no + n1 + - -+ + ny. Under this sampling scheme:

al ) efl\(T)/\Tn J /\Aj nj
P. = nolni!...ny! Z n!( ! H<A((T))>

np=0 Jj=0

o I o MAIN(A) I e MA; \nj
| e
" Ji J

Jj=1




A sampling technique

Corollary 1

Let T; be the points of a homogeneous Poisson process on T with
intensity A > 0, where vol(T) < co. Then we may sample the
process by

1. generating N(T) ~ Pois(A(T)) and
2. generating T; Uni(T), i=1,...,N(T).

Proof.
Apply the Theorem with constant A(t). Then
A, dt
Pr(T; € A) = 3 f;‘_ = vol(A) /vol(T).



Poisson processes on [0, 00)

A Poisson process on [0, 00) can be represented by the counting
function

N(t):N([O,t]):il{T,-g t}, 0<t<oo.
i=1

The homogeneous Poisson process on [0, 00) is defined by these
properties:

1. N(0) =0;

2. for 0 < s < t, N(t) — N(s) ~ Pois(A(t — s));

3. for0=ty <ty <--- < tm, N(t;) — N(ti_1) are independent.



Simulation methods
It can be shown that

T,' — T,',l ~ exp()\), i > 1.
A heuristic argument says: under (1) and for some x,
Pr( Ti— Tip1 > x) = e*)‘x7

but if T; — T;y11 > x, then the interval (T;_1, T;—1 + x) has no
events. Under the Poisson model, this probability is

0 ,—Ax
£(0; Ax) = (Ax)of — e,

The exponential spacings method simulates a homogeneous
Poisson process thus: setting Top = 0,

Ti=Tia+E, E<ep(), i>1.



Simulation methods

Following previous discussion, we can also simulate a homogeneous
Poisson process on [0, T] by

1. generating N ~ Pois(AT),
2. generating S; 'E Uni([0, T]), i=1,..., N, and

3. setting T; = S(jy.



Non-homogeneous Poisson process on [0, c0)

The non-homogeneous Poisson process on [0, c0) has these
properties:

1. N(0) =0;
2. for 0 < s <t, N(t)— N(s) ~ Pois( It A(x)dx);

3. for0=1ty <ty << tm N(t;) — N(tj—1) are independent.

The cumulative rate function is A(t fo x)dx. Start by
assuming lim_,o A(t) = oo and )\( ) > 0, Vt. Define variables
Y; = A(T;) and the counting function

M(0) = 310 < 6} = ST, < A (0) = NA (1),
i=1 i=1
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Non-homogeneous Poisson process on [0, c0)

Define variables Y; = A(T;) and the counting function

¢S]

N(6) = S°1(Yi < 8} = SOUT < A7) = N(A (1)

i=1
Note that N,(0) =0 and
A"1(s)
~1(¢)
= Pois (/\(/\_l(t)) - /\(/\_1(5))) = Pois(t — s).

N, (t) — Ny(s) = N(A"*(t)) — N(A"*(s)) ~ Pois (/A /\(x)dx>

Finally the increments of N,(t) are increments of N(A™(t)). Independence of
the latter implies independence for the former. Therefore,

Yi =NAN(T;) ~ PP(1).
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More exponential spacings
We have shown Y; = A(T;) ~ PP(1). Setting Yo = To =0, we
can therefore simulate T; thus:

Yi=Yia+E, ECexp(l), i>1,
Ti = /\_1()/,) = A_l(/\(T;_l) + E,) .

Comments:

» If lim; 00 A(t) = Ag, then A=1(y) does not exists for y > Ag.
If A(T;) + Ei > Ao, then there is no T;y; and the process
stops.

» The algorithm is convenient when A and A~! are available in
closed form.

» The algorithm works even when A takes finite jumps or is
constant on some intervals by taking

AY(y) =inf{t > 0|A(t) > y}.
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Thinning (rejection sampling for point processes)

Let A(¢) > A(t) and assume we can sample from a Poisson process
on 7 with X for intensity function. The following algorithm
generates (T1,..., Tn) ~ NHPP(T, \):

1. Generate (Ty,..., T_N)) ~ NHPP(T, \);

2. if N >0, then for i € {1,..., N}:
2.1 draw u,NUni(O 1)
2.2 if uj < p(T;) = MT;)/NT;), then T; € {Ty,..., Tn}.
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Why thinning works

Let N(A) be the number of points T; in a set A and N(A) be the
analogue for points T;. Note that N(A) ~ Pois( fA dt). Then

the probability a point in T € A is accepted is

JaP(OA(B)dt _ [, M(t)dt
[a\(t)dt RGeS

It holds that N(A)|N(A) ~ binom(N(A), p(A)). Marginalizing over
N(A) gives

N(A) ~ Pois <p(A) /A X(t)dt) = Pois ( /A /\(t)dt> .

Independence of N on non-overlapping sets is inherited from N.
Therefore (T1,..., Tn) ~ NHPP(T, \).

p(A) =
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The temporal Hawkes process

The temporal Hawkes process is a non-homogeneous Poisson
process on [0, 00) with (conditional) intensity function given by

Mt Te<t)=Xo+ > gt—Ti),

Tk<t

where g > 0 is a non-increasing triggering function. Because the
intensity increases after an observation, the Hawkes process is
referred to as self-exciting and is useful for modeling contagion.
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Exponential decay

A common choice for g is the exponential decay function:

At Te<t)=Xo+a y e 770,

Tk<t

A Hawkes Process (N‘, l‘)

]

Intensity Process ll

Time t

Figure 1: A Hawkes Process with Exponential Decaying Intensity (N, A;)

Dassios and Zhao, 2013
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Exponential decay

A common choice for g is the exponential decay function:

At Te<t)=Xo+a y e 7TH,
Tk<t

Exponential decay has pros and cons:
» Pros: exponential decay has computational benefits. Process
simulation and likelihood computations are both O(N).

» Cons: the exponential rate of decay may be to fast for certain
applications, precluding long-term dependencies.

We will return to linear-time computing for the exponential
triggering kernel later.
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Ogata's modified thinning algorithm

Algorithm 2 Generate a Hawkes process by thinning.

1: procedure HAWKESBYTHINNING(T', A*(-))
require: A\*(-) non-increasing in periods of no arrivals.

3 e + 10710 (some tiny value > 0).
4 P+ [, t+0.

5: while t < T do

6: Find new upper bound:

7 M« X*(t+e).

8 Generate next candidate point:
9 E « Exp(M), t+ t+E.
10: Keep it with some probability:
11: U « Unif(0, M).

12: if t < T and U < A\*(t) then
13: P« [P, t].

14: end if

15: end while
16: return P
17: end procedure

Laub et al., 2015
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Ogata's modified thinning algorithm

— A(®)

-

O Accepted
+ Rejected

ST0T “|e 3° qneT

—

O Accepted
Rejected

+

(2)

(b)
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Conditional intensity and stochastic calculus
For the counting process N(t) with histories #(t), we can define
our conditional intensity

\(E) — fim EQVCE+ ) — N(OIH() _ E(N(O](1)
h—0 h dt

and for a general Hawkes process we have

A(E) = do + /Otg(t ~ u)dN(u).

When g specifies exponential decay, this becomes

t
A(t) = Ao +a/ e P dN(u),
0

or

dA(t) = B(ho — A(t))dt + adN(t).
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Asymptotic normality of Hawkes process

Theorem 2

Assume 0 < n:= [~ g(s)ds < 1 and [;° sg(s)ds < oo, then the
number of HP arr/vals in (O t] is asymptot/ca//y normally
distributed as t — oo, i.e.,

. (N(O, t] — Aot(1 — n)~L

Not(1l— )3 <y> — *0)-

Note that for the exponential Hawkes model we only have a CLT
when o/ < 1:

n:/ g(s)ds:a/ e Bsds = 2.
0 0 s
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Stationarity and explosiveness

Again, let n:= [ g(s)ds and define
m(t) = E(\(£)) = E ()\0 + /Otg(t - u)dN(u))
— o+ /Otg(t ~ u) E(dN(1)).

But

A(t) = lim E(N(t + h) - N(8)|[#H(1)) _ E(dN(s)tIH(t)) 7

so by iterated expectation

(6) — EOO) — E (E(dN(;)tm(t)))  Elee)

and m(t)dt = E(dN(t)). Thus we obtain the recursion

m(t) =X+ /Otg(tf s)m(s)ds =\ + /Otm(t —5)g(s)ds.

When n < 1, g(t) = A/(1 — n), but when n > 1, g(t) diverges to infinity.
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More exponential Hawkes process

Definition 1 (Intensity-based)
A Hawkes process with exponentially decaying intensity is a Poisson process

Ny = {Tk}k=1.2,... on Ry with non-negative F;-stochastic intensity

At =a+ (Ao — a)e ot Z 7 (t=T%) , t>0,
0<Te<t

where:

» {Fi}e>o is a history of the process w.r.t.w. {A¢}i>0 is adapted;

» a > 0 is the constant reversion level;

» )\o > 0 is the initial intensity at time t = 0;
» § > 0 is the rate of exponential decay;
»

{Y«}k=1,2,... are positive random variables that are i.i.d. with distribution
function G(y);

v

{Tk}k=1,2,... and {Y«}k=1,,... are mutually independent.
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More exponential Hawkes process
Definition 2 (Cluster-based)

A Hawkes process with exponentially decaying intensity is a marked Poisson
cluster process C = {T;, Y;}i=1,2,... with times T; € Ry and marks Y;: the
number of points in (0, t] is defined N: = N¢o,y; the cluster centers of C are
‘immigrants’, the rest are ‘offspring’, and they share the following structure:

>

>

the immigrants | = {Tpm}m=1,,... are distributed as an NHPP with rate
a+ (o —a)e %,

the marks {Ym}m=1,2,... associated to immigrants | are i.i.d. Y, ~ G(y)
and are independent of the immigrants;

each immigrant T,, generates one cluster Cp,, and these clusters are
independent;

each cluster Cy, is a random set formed by marked points of generations
of order n=0,1,... with the following branching structure
» the immigrant and its mark (T, Yn) are generation 0;
» given generations 0,1,...,n in Cp, each (T}, Yj) € Cp, of
generation n generates are a Poisson process on (T, 00) with
intensity Y;exp(—d(t — T;)), with Y; ~ G independent.

C consists of the union of all clusters, i.e., C=,_;, Cm.



Cluster-based representation

T

|

|
e Y Y
X x X

X---+-m
X ---&

X - -
X-----

» The cluster-based or branching process definition is equivalent
to the intensity-based definition.

» The cluster representation can be used to simulate a Hawkes

process just as we have used the intensity representation to
simulate.

» The equivalent representations hold beyond exponential HP.

Laub et al., 2015
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Cluster-based representation

Observed

t

Background ¢

A

I 1 |
T T LF T

Labeled
0

Reinhart, 2018
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Explosion and cluster-based representation

Conditioned on knowing the number of children in a generation (say, D1), the
generation’s arrival times are distributed i.i.d. with density g(t — T;)/n. Note
that for the exponential Hawkes process, we have

glt—Ti)/n= e,

The expected total number of children in generation i is E(D;) = n', so the
expected total number of children for one individual is

o oo oo . %n’ <1
e(X0)-Te@-a-{ T 05]

When n < 1, it is the ration between the number of descendants for one parent
and the size of the entire family (including the parent):

E( ?le") _ T _1Z —n
1+E(X5, D) 1+ & 7
=11

1-n 1—

3

3

therefore any HP event chosen at random is generated exogenously (an
immigrant) with probability 1 — n or endogenously (a child) with probability n.
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An incorrect cluster-based simulation algorithm

Algorithm 3 Generate a Hawkes process by clusters.

1: procedure HAWKESBYCLUSTERS(T, A, o, )

2: P+« {}.

3: Immigrants:

4 k < Poi(AT)

5: C1,Ca,. .., Cp &2 Unif (0, T).

6: Descendants: .

7 Dy, Da, ..., Dy &2 Poi(a/B).

8: for i + 1 to k do

9: if D; > 0 then

10: E1,Bs,..., Ep, *% Exp(B).
11: P+ PU{Ci+E,...,Ci+ Ep,}.
12: end if

13: end for

14: Remove descendants outside [0, 7:
15: P« {P,:Pe PP <T}.

16: Add in immigrants and sort:

17: P+ Sort(PU{C1,Cy,...,Ck}).

18: return P
19: end procedure

2015

Laub et al.,
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More exponential Hawkes process

Definition 3 (Intensity-based)
A Hawkes process with exponentially decaying intensity is a Poisson process

Ny = {Tk}k=1.2,... on Ry with non-negative F;-stochastic intensity

At =a+ (Ao — a)e ot Z 7 (t=T%) , t>0,
0<Te<t

where:

» {Fi}e>o is a history of the process w.r.t.w. {A¢}i>0 is adapted;

» a > 0 is the constant reversion level;

» )\o > 0 is the initial intensity at time t = 0;
» § > 0 is the rate of exponential decay;
»

{Y«}k=1,2,... are positive random variables that are i.i.d. with distribution
function G(y);

v

{Tk}k=1,2,... and {Y«}k=1,,... are mutually independent.
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A fast simulation method

A simulation algorithm for one sample path {N;, At }¢=0,1,... of a 1D exponential
Hawkes process conditional on g and Ny = 0, with jump distribution G and K
jump times {T1,..., Tk}:

1. set the initial conditions Ty =0, )\Toi =X >a Nop=0and
ke{0,1,..., K -1}
2. simulate the (k + 1)th inter-arrival time Siy1 by

Sper = 5/921 A 5/E2+)1 » D >0
+1 5(2)

il D11 <0
where
6l
Do =1+ "YUy e,
)\T;r —a
and

1 1
sM, = =5 D, s&), = ~SInle, U~ U(0,1);
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A fast

simulation method

. record the (k 4 1)th jump time

Tis1 = Tk + Siy1;

. record the change in the intensity at time Ty41 by

At = A~ + Yia1 Yiri ~ G
T T th * ’
where

Ap— = ()\TJr _ a) e 0 Tr1=Ti) | a:

k+1 k

record the change in the in process N; by

NT,:_1 = NT_ +1.

k+1

Proof.
On the whiteboard...
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Multivariate Hawkes process
Consider the D-dimensional point process {Nld]}(?:l, where

N,Ed] = {T;Ed]}k:Lz,... with the underlying intensity process

D
A — gl (A{;’] _a[dl) ety S e G

=1 1t
<t

2 5b

- "

v
Lemonnier et al., 2016

We call this process a multivariate Hawkes process or mutually
exciting Hawkes processes. These can also be simulated using a
similar algorithm but taking the next inter-arrival time as

ke =min{Sl,, ... S0y
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Conditional intensity as hazard function

Given the history up until the last arrival u, H(u), define the
conditional c.d.f. and p.d.f. of the next arrival time Ty

F(t]?-[(u)):/tPr(TkH c [s,s—i-ds]]?-[(u))ds:/t F(s|H(u))ds

u
The joint p.d.f. of a realization {t1, tp,..., tk} is

k

Ftr to, o t) = [ [ F(6i1H(ti-1)).

i=1

The shorthand notations f*(t) = f(t|H(u)) and
F*(t) = F(t|H(u)) are common. The conditional intensity can be
characterized as the hazard function

_ (1)
A(t) = 1_7,__*(”
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Hawkes process likelihood

Theorem 3

Let N(-) be a regular point process on [0, T| for some positive

T < oo and let ty, ty, ..., tx denote a realization of N(-) over
[0, T]. Then the likelihood L of N(-) is expressible as

({10 (- 008 - (D) 0.
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Hawkes process likelihood

Assume process observed to time of kth arrival. The joint density is

k

L=f(t,,....t) =[] F(t).

i=1

Rearrange hazard function definition of A(t)

e B0 dlog(l - F(1)
=1 Frm = 1oF@ dt

and integrate both sides over the interval (i, t)
t
—/ Au)du = log(1 — F*(t)) — log(1 — F*(t)) -
t

But F*(tx) = 0 because Tii1 > tx, so

Fr(t) =1 —exp (— [A(u)du> and  £(£) = A(t) exp (— /tt)\(u)du) .

35



Hawkes process likelihood

So far, we have

and

F'(t) = 1 — exp (- /t:)\(u)du> and  F*(£) = A(t) exp (— /t:)\(u)du> .

Now suppose the process is observed to some time T > t,. Then the likelihood
includes the probability of not observing anything on the interval (t, T]:

L=(1- F*(T))ilif*(t;) = exp (— /t: A(u)du) ,-lif*(ti)

_ <ﬁ At exp ( /til /\(u)du>> exp (7 /tkT ,\(U)du)

<f[ A(t,-)) e M)
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Exponential Hawkes process likelihood
The log-likelihood for the interval [0, tc] can be written

£=—N(t)+ > log(A(t)),

i=1

and A(tx) can be written

A(t) = /Otl Au)du + kz:;/tt Au)du.

For the exponential Hawkes process, this becomes

ty k-1 tit1
A(te) = /0 Adu + Z/ A+ ae M dy
i=1 "t

ti<u
k=1 iy 0
“Mtay [ Y e
i=1 vt j=1
k=1 i tit1
“Ntay > [ e
i=1 j=1"T%
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Exponential Hawkes process likelihood

Continuing, we have

A(te) _Atk+azzi:/

i=1 j=1
k—1 i

tit1

= Aty — — ZZ ( Bltini—t) _ o ,B(t,-—tj))

i=1 j=1

_)\tk—*Z( —Btk—1t) _ o= B(ti—

k—1

= Aty — %Z (et —1).

i=1

Thus, the log-likelihood can be written

k i—1
0= =ty + Z <|Og <)\ + aZe_B(ti_‘j)> + %
i=1 j=1

fi))

(e—ﬁ(fk—fi) _ 1)) .
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Exponential Hawkes process likelihood

The log-likelihood

k i—1
=ty <'°g (A ¥ aZe‘“”“) +5 (- 1>> '
i=1 j=1

has quadratic computational complexity O(k2), but a recursion turns it into
linear complexity O(k). For i =2,... k, let A(i) = ZJ’ Le A=t Then

i—1

i—2
A(i) = e Ptithti—1 Zefﬁt,‘_ﬁﬁtj — e*ﬁ(fi*fi—ﬂ <1 + Z eﬁ(fi—15fj)>
j=1

Jj=1

=e Pl (1 4 A — 1)) .

Letting A(1) = 0, the log-likelihood can be written

E:—)\tk—i—Z(Iog A+ aA(i)) + 3 ( —B(t— f>—1)) .

i=1

Similar recursions are also available for the log-likelihood gradient.
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Nonlinear Hawkes process

Letting W : R — R4 be an arbitrary function, a nonlinear Hawkes
process has conditional intensity function

AE) = W (/Otg(t _ u)dN(u)) .

The linear Hawkes process is a special case. One may incorporate
inhibition by specifying, say,

A(t) = exp (,ut—/otg(t— u)dN(u)> .

Recently, autoregressive neural networks (RNN, transformer NN)
have been used to model the function V.
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Spatiotemporal Hawkes processes

» Spatiotemporal Hawkes processes are useful for modeling earthquakes,
wildfires, viral contagion and gun violence.

» The conditional intensity models the rate of events at locations

s€ X CRY:
o E (N (B(s,As) x [t, t + At)) |H(t))
Als, t[1()) = im B(s, As)|At :
» For {(s1, t1),...,(sk, ..., tx) observed, a spatiotemporal Hawkes process

has conditional intensity
A(s,t) = ul(s) + Y _gls —si,t — t;),
t<t
where the triggering function g is non-negative.

» The spatiotemporal HP also has a cluster process representation with
mean number of children for each event

-
n:// g(s, t)dsdt .
x Jo
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Spatiotemporal Hawkes processes

Inhomogeneous process Self-exciting process

. . .
. .
. . . .
o L] L] Py ."' L]
T, S 4 Ty e 4
. I ) ...o . -9 ..,":o
. ¢ . . ‘.o. o . . '.o.
. «” . «® Py
. . ...... . . . . .:...', .
L] L]
. ':4{' . 3 ¢ . wd g, 3,
. *% . . . LALTS .
° o® . ° ."3
. . ) i
hd . . ¢ .
¢ . ® . ° ¢ - ® e °
o®
L] A4 ° L4 ‘e L] .k

Reinhart, 2018



Spatiotemporal Hawkes process

The log-likelihood for the spatiotemporal Hawkes process takes a similar form
to that of the temporal Hawkes process:

Z:ZIog()\(s,-,t,-))—//T A(s, t)dsdt
—Zlog w(s) +) _glsi—si,ti—t)

<t
// (s)—i—Zg s —sj, t — tj)dsdt .
<t

The double summation in the first term implies an O(k?) computational
complexity for k observations. No linear-time recursion is known. In
EM/MCMC, it can be helpful to use the (still O(k?)) ‘complete data likelihood’

le =" 1{u; = 0} log (u(s) +ZZl{uI—J}Iog g(si— s, ti— 1))

i=1 i=1 j=1

—/X/OTA(S, t)dsdt .

43



Simulating the spatiotemporal Hawkes process

» Ogata (1998) proposes a two-stage algorithm that (1)
simulates the temporal HP obtained by integrating over space
and (2) simulates from the spatial inhomogeneous PP for
each timepoint.

» Zhuang, Ogata and Vere-Jones (2004) propose a cluster based
algorithm.
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Simulating the spatiotemporal Hawkes process

Again, define the branching number n = [, fOT g(s, t)dsdt. The following
algorithm simulates a sample path of a spatiotemporal Hawkes process.

1.

Generate events from the background process with intensity u(s) using a
method for simulating NHPP (e.g., thinning). Call events GO,

2. let I =0;

3. For each event i € G), simulate the number of offspring O,.(/)

N ~ Pois(n) and the position/time of each with the normalized g as
distribution.

Let GU*Y) = UieG(/) Oi(l)

If GUH). not empty, let / =/ + 1 and return to step 3. Otherwise, return
U, GY.

45



