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Point processes

I A point process is a random list of points Ti ∈ T ⊂ RD .

I The total number of points N(T ) may be fixed or random.

I For A ⊂ T , let N(A) be the total number of points in A:

N(A) =

N(T )∑
i=1

1{Ti ∈ A} .

I We are interested in non-explosive point processes, for which

Pr(N(A) <∞) = 1 when vol(A) <∞ .
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Poisson processes

I The points Ti ∈ T follow a homogeneous poisson process with intensity
λ > 0 if

N(Aj)
⊥∼ Pois(λ · vol(Aj))

for disjoint sets Aj ⊂ T that satisfy vol(Aj) <∞.

I Define λ(t) : T → [0,∞) so that∫
A

λ(t)dt <∞ whenever vol(A) <∞ .

Then for a non-homogeneous point process on T with intensity function
λ(t)

N(Aj)
⊥∼ Pois

(∫
Aj

λ(t)dt

)

for disjoint sets Aj ⊂ T that satisfy vol(Aj) <∞.
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A sampling technique

Theorem 1
Let Ti be the points of a Poisson process on T with intensity
function λ(t) ≥ 0, where Λ(T ) =

∫
T λ(t)dt. Then Ti can be

sampled by

1. generating N(T ) ∼ Pois(Λ(T )) and

2. generating N(T ) independent Ti with probabilities

Pr(Ti ∈ A) =
1

Λ(T )

∫
A
λ(t)dt .
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A sampling technique

Proof.
For J ≥ 1, let A1, . . . ,AJ be disjoint subsets of T and define
A0 = {t ∈ T |t /∈ ∪J

j=1Aj}. Let nj ≥ 0 for j = 1, . . . , J. Let

P∗ = Pr(N(A1) = n1, . . . ,N(AJ) = nJ)

=
∞∑

n0=0

Pr(N(A0) = n0,N(A1) = n1, . . . ,N(AJ) = nJ) .

Set n = n0 + n1 + · · ·+ nJ . Under this sampling scheme:

P∗ =
n!

n0!n1! . . . nJ !

∞∑
n0=0

e−Λ(T )Λ(T )n

n!

J∏
j=0

(
Λ(Aj)

Λ(T )

)nj

=
∞∑

n0=0

J∏
j=0

e−Λ(Aj )Λ(Aj)
nj

nj !
=

J∏
j=1

e−Λ(Aj )Λ(Aj)
nj

nj !
.
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A sampling technique

Corollary 1

Let Ti be the points of a homogeneous Poisson process on T with
intensity λ > 0, where vol(T ) <∞. Then we may sample the
process by

1. generating N(T ) ∼ Pois(Λ(T )) and

2. generating Ti
iid∼ Uni(T ), i = 1, . . . ,N(T ).

Proof.
Apply the Theorem with constant λ(t). Then

Pr(Ti ∈ A) =
λ
∫
A dt

λ
∫
T dt

= vol(A)/vol(T ) .
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Poisson processes on [0,∞)

A Poisson process on [0,∞) can be represented by the counting
function

N(t) = N([0, t]) =
∞∑
i=1

1{Ti ≤ t} , 0 ≤ t <∞ .

The homogeneous Poisson process on [0,∞) is defined by these
properties:

1. N(0) = 0;

2. for 0 ≤ s < t, N(t)− N(s) ∼ Pois(λ(t − s));

3. for 0 = t0 < t1 < · · · < tm, N(ti )− N(ti−1) are independent.
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Simulation methods
It can be shown that

Ti − Ti−1 ∼ exp(λ) , i ≥ 1 . (1)

A heuristic argument says: under (1) and for some x ,

Pr(Ti − Ti+1 > x) = e−λx ,

but if Ti − Ti+1 ≥ x , then the interval (Ti−1,Ti−1 + x) has no
events. Under the Poisson model, this probability is

f (0;λx) =
(λx)0e−λx

0!
= e−λx .

The exponential spacings method simulates a homogeneous
Poisson process thus: setting T0 = 0,

Ti = Ti−1 + Ei , Ei
iid∼ exp(λ) , i ≥ 1 .
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Simulation methods

Following previous discussion, we can also simulate a homogeneous
Poisson process on [0,T ] by

1. generating N ∼ Pois(λT ),

2. generating Si
iid∼ Uni([0,T ]), i = 1, . . . ,N, and

3. setting Ti = S(i).
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Non-homogeneous Poisson process on [0,∞)

The non-homogeneous Poisson process on [0,∞) has these
properties:

1. N(0) = 0;

2. for 0 ≤ s < t, N(t)− N(s) ∼ Pois
(∫ t

s λ(x)dx
)

;

3. for 0 = t0 < t1 < · · · < tm, N(ti )− N(ti−1) are independent.

The cumulative rate function is Λ(t) =
∫ t

0 λ(x)dx . Start by
assuming limt→∞ Λ(t) =∞ and λ(t) > 0, ∀t. Define variables
Yi = Λ(Ti ) and the counting function

Ny (t) =
∞∑
i=1

1{Yi ≤ t} =
∞∑
i=1

1{Ti ≤ Λ−1(t)} = N(Λ−1(t)) .
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Non-homogeneous Poisson process on [0,∞)

Define variables Yi = Λ(Ti ) and the counting function

Ny (t) =
∞∑
i=1

1{Yi ≤ t} =
∞∑
i=1

1{Ti ≤ Λ−1(t)} = N(Λ−1(t)) .

Note that Ny (0) = 0 and

Ny (t)− Ny (s) = N(Λ−1(t))− N(Λ−1(s)) ∼ Pois

(∫ Λ−1(s)

Λ−1(t)

λ(x)dx

)
= Pois

(
Λ(Λ−1(t))− Λ(Λ−1(s))

)
= Pois(t − s) .

Finally the increments of Ny (t) are increments of N(Λ−1(t)). Independence of
the latter implies independence for the former. Therefore,

Yi = Λ(Ti ) ∼ PP(1) .
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More exponential spacings
We have shown Yi = Λ(Ti ) ∼ PP(1). Setting Y0 = T0 = 0, we
can therefore simulate Ti thus:

Yi = Yi−1 + Ei , Ei
iid∼ exp(1) , i ≥ 1 ,

Ti = Λ−1(Yi ) = Λ−1(Λ(Ti−1) + Ei ) .

Comments:

I If limt→∞ Λ(t) = Λ0, then Λ−1(y) does not exists for y > Λ0.
If Λ(Ti ) + Ei > Λ0, then there is no Ti+1 and the process
stops.

I The algorithm is convenient when Λ and Λ−1 are available in
closed form.

I The algorithm works even when Λ takes finite jumps or is
constant on some intervals by taking

Λ−1(y) = inf{t ≥ 0|Λ(t) ≥ y} .
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Thinning (rejection sampling for point processes)

Let λ̃(t) ≥ λ(t) and assume we can sample from a Poisson process
on T with λ̃ for intensity function. The following algorithm
generates (T1, . . . ,TN) ∼ NHPP(T , λ):

1. Generate (T̃1, . . . , T̃Ñ
)) ∼ NHPP(T , λ̃);

2. if Ñ > 0, then for i ∈ {1, . . . , Ñ}:
2.1 draw ui ∼ Uni(0, 1);

2.2 if ui < ρ(T̃i ) = λ(T̃i )/λ̃(T̃i ), then T̃i ∈ {T1, . . . ,TN}.
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Why thinning works

Let N(A) be the number of points Ti in a set A and Ñ(A) be the
analogue for points T̃i . Note that Ñ(A) ∼ Pois(

∫
A λ̃(t)dt). Then

the probability a point in T̃i ∈ A is accepted is

ρ(A) =

∫
A ρ(t)λ̃(t)dt∫

A λ̃(t)dt
=

∫
A λ(t)dt∫
A λ̃(t)dt

.

It holds that N(A)|Ñ(A) ∼ binom(Ñ(A), ρ(A)). Marginalizing over
Ñ(A) gives

N(A) ∼ Pois

(
ρ(A)

∫
A
λ̃(t)dt

)
= Pois

(∫
A
λ(t)dt

)
.

Independence of N on non-overlapping sets is inherited from Ñ.
Therefore (T1, . . . ,TN) ∼ NHPP(T , λ).
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The temporal Hawkes process

The temporal Hawkes process is a non-homogeneous Poisson
process on [0,∞) with (conditional) intensity function given by

λ(t|Tk < t) = λ0 +
∑
TK<t

g(t − Tk) ,

where g > 0 is a non-increasing triggering function. Because the
intensity increases after an observation, the Hawkes process is
referred to as self-exciting and is useful for modeling contagion.
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Exponential decay
A common choice for g is the exponential decay function:

λ(t|Tk < t) = λ0 + α
∑
TK<t

e−β(t−Tk ) .
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Exponential decay

A common choice for g is the exponential decay function:

λ(t|Tk < t) = λ0 + α
∑
TK<t

e−β(t−Tk ) .

Exponential decay has pros and cons:

I Pros: exponential decay has computational benefits. Process
simulation and likelihood computations are both O(N).

I Cons: the exponential rate of decay may be to fast for certain
applications, precluding long-term dependencies.

We will return to linear-time computing for the exponential
triggering kernel later.
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Ogata’s modified thinning algorithm
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Ogata’s modified thinning algorithm
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Conditional intensity and stochastic calculus
For the counting process N(t) with histories H(t), we can define
our conditional intensity

λ(t) = lim
h→0

E (N(t + h)− N(t)|H(t))

h
=

E (dN(t)|H(t))

dt

and for a general Hawkes process we have

λ(t) = λ0 +

∫ t

0
g(t − u)dN(u) .

When g specifies exponential decay, this becomes

λ(t) = λ0 + α

∫ t

0
e−β(t−u)dN(u) ,

or

dλ(t) = β(λ0 − λ(t))dt + αdN(t) .
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Asymptotic normality of Hawkes process

Theorem 2
Assume 0 < n :=

∫∞
0 g(s)ds < 1 and

∫∞
0 sg(s)ds <∞, then the

number of HP arrivals in (0, t] is asymptotically normally
distributed as t →∞, i.e.,

Pr

(
N(0, t]− λ0t(1− n)−1√

λ0t(1− n)−3
< y

)
−→ Φ(y) .

Note that for the exponential Hawkes model we only have a CLT
when α/β < 1:

n =

∫ ∞
0

g(s)ds = α

∫ ∞
0

e−βsds =
α

β
.
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Stationarity and explosiveness
Again, let n :=

∫∞
0

g(s)ds and define

m(t) = E(λ(t)) = E

(
λ0 +

∫ t

0

g(t − u)dN(u)

)
= λ0 +

∫ t

0

g(t − u) E(dN(u)) .

But

λ(t) = lim
h→0

E(N(t + h)− N(t)|H(t))

h
=

E(dN(t)|H(t))

dt
,

so by iterated expectation

m(t) = E(λ(t)) = E

(
E(dN(t)|H(t))

dt

)
=

E(dN(t))

dt

and m(t)dt = E(dN(t)). Thus we obtain the recursion

m(t) = λ+

∫ t

0

g(t − s)m(s)ds = λ+

∫ t

0

m(t − s)g(s)ds .

When n < 1, g(t)→ λ/(1− n), but when n > 1, g(t) diverges to infinity.
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More exponential Hawkes process

Definition 1 (Intensity-based)
A Hawkes process with exponentially decaying intensity is a Poisson process
Nt = {Tk}k=1,2,... on R+ with non-negative Ft-stochastic intensity

λt = a + (λ0 − a)e−δt +
∑

0≤Tk<t

Yke
−δ(t−Tk ) , t ≥ 0 ,

where:

I {Ft}t≥0 is a history of the process w.r.t.w. {λt}t≥0 is adapted;

I a ≥ 0 is the constant reversion level;

I λ0 > 0 is the initial intensity at time t = 0;

I δ > 0 is the rate of exponential decay;

I {Yk}k=1,2,... are positive random variables that are i.i.d. with distribution
function G(y);

I {Tk}k=1,2,... and {Yk}k=1,2,... are mutually independent.
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More exponential Hawkes process
Definition 2 (Cluster-based)
A Hawkes process with exponentially decaying intensity is a marked Poisson
cluster process C = {Ti ,Yi}i=1,2,... with times Ti ∈ R+ and marks Yi : the
number of points in (0, t] is defined Nt = NC(0,t]; the cluster centers of C are
‘immigrants’, the rest are ‘offspring’, and they share the following structure:

I the immigrants I = {Tm}m=1,2,... are distributed as an NHPP with rate
a + (λ0 − a)e−δt ;

I the marks {Ym}m=1,2,... associated to immigrants I are i.i.d. Ym ∼ G(y)
and are independent of the immigrants;

I each immigrant Tm generates one cluster Cm, and these clusters are
independent;

I each cluster Cm is a random set formed by marked points of generations

of order n = 0, 1, . . . with the following branching structure

I the immigrant and its mark (Tm,Ym) are generation 0;
I given generations 0, 1, . . . , n in Cm each (Tj ,Yj) ∈ Cm of

generation n generates are a Poisson process on (Tj ,∞) with
intensity Yj exp(−δ(t − Tj)), with Yj ∼ G independent.

I C consists of the union of all clusters, i.e., C =
⋃

m=1,2,... Cm.
24



Cluster-based representation
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I The cluster-based or branching process definition is equivalent
to the intensity-based definition.

I The cluster representation can be used to simulate a Hawkes
process just as we have used the intensity representation to
simulate.

I The equivalent representations hold beyond exponential HP.
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Cluster-based representation
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Explosion and cluster-based representation

Conditioned on knowing the number of children in a generation (say, D1), the
generation’s arrival times are distributed i.i.d. with density g(t − Ti )/n. Note
that for the exponential Hawkes process, we have

g(t − Ti )/n = βe−β(t−Ti ) .

The expected total number of children in generation i is E(Di ) = ni , so the
expected total number of children for one individual is

E

(
∞∑
i=1

Di

)
=
∞∑
i=1

E(Di ) =
∞∑
i=1

ni =
{ n

1−n
, n < 1

∞ , n ≥ 1
.

When n < 1, it is the ration between the number of descendants for one parent
and the size of the entire family (including the parent):

E
(∑∞

i=1 Di

)
1 + E

(∑∞
i=1 Di

) =
n

1−n

1 + n
1−n

=
n

1−n
1

1−n

= n ,

therefore any HP event chosen at random is generated exogenously (an
immigrant) with probability 1− n or endogenously (a child) with probability n.
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An incorrect cluster-based simulation algorithm
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More exponential Hawkes process

Definition 3 (Intensity-based)
A Hawkes process with exponentially decaying intensity is a Poisson process
Nt = {Tk}k=1,2,... on R+ with non-negative Ft-stochastic intensity

λt = a + (λ0 − a)e−δt +
∑

0≤Tk<t

Yke
−δ(t−Tk ) , t ≥ 0 ,

where:

I {Ft}t≥0 is a history of the process w.r.t.w. {λt}t≥0 is adapted;

I a ≥ 0 is the constant reversion level;

I λ0 > 0 is the initial intensity at time t = 0;

I δ > 0 is the rate of exponential decay;

I {Yk}k=1,2,... are positive random variables that are i.i.d. with distribution
function G(y);

I {Tk}k=1,2,... and {Yk}k=1,2,... are mutually independent.

29



A fast simulation method

A simulation algorithm for one sample path {Nt , λt}t=0,1,... of a 1D exponential
Hawkes process conditional on λ0 and N0 = 0, with jump distribution G and K
jump times {T1, . . . ,TK}:

1. set the initial conditions T0 = 0, λ
T±

0
= λ0 > a, N0 = 0 and

k ∈ {0, 1, . . . ,K − 1};
2. simulate the (k + 1)th inter-arrival time Sk+1 by

Sk+1 =
{ S

(1)
k+1 ∧ S

(2)
k+1 , Dk+1 > 0

S
(2)
k+1 , Dk+1 < 0

,

where

Dk+1 = 1 +
δ lnU1

λT+
k
− a

U1 ∼ U(0, 1) ,

and

S
(1)
k+1 = −1

δ
lnDk+1 , S

(2)
k+1 = −1

a
lnU2 , U2 ∼ U(0, 1) ;
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A fast simulation method

3. record the (k + 1)th jump time

Tk+1 = Tk + Sk+1 ;

4. record the change in the intensity at time Tk+1 by

λT+
k+1

= λ
T−
k+1

+ Yk+1 , Yk+1 ∼ G ,

where

λ
T−
k+1

=
(
λT+

k
− a
)
e−δ(Tk+1−Tk ) + a ;

5. record the change in the in process Nt by

NT+
k+1

= N
T−
k+1

+ 1 .

Proof.
On the whiteboard...
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Multivariate Hawkes process
Consider the D-dimensional point process {N [d ]

t }Dd=1, where

N
[d ]
t ≡ {T

[d ]
k }k=1,2,... with the underlying intensity process

λ
[d ]
t = a[d ] +

(
λ

[d ]
0 − a[d ]

)
e−δ

[d ]t +
D∑
`=1

∑
T

[`]
k <t

Y
[d ,`]
k e−δ

[d,`](t−T [`]
k ) .
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We call this process a multivariate Hawkes process or mutually
exciting Hawkes processes. These can also be simulated using a

similar algorithm but taking the next inter-arrival time as

Sk+1 = min{S [1]
k+1, . . . ,S

[D]
k+1} .
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Conditional intensity as hazard function
Given the history up until the last arrival u, H(u), define the
conditional c.d.f. and p.d.f. of the next arrival time Tk+1

F (t|H(u)) =

∫ t

u
Pr(Tk+1 ∈ [s, s + ds]|H(u))ds =

∫ t

u
f (s|H(u))ds .

The joint p.d.f. of a realization {t1, t2, . . . , tk} is

f (t1, t2, . . . , tk) =
k∏

i=1

f (ti |H(ti−1)) .

The shorthand notations f ∗(t) = f (t|H(u)) and
F ∗(t) = F (t|H(u)) are common. The conditional intensity can be
characterized as the hazard function

λ(t) =
f ∗(t)

1− F ∗(t)
.
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Hawkes process likelihood

Theorem 3
Let N(·) be a regular point process on [0,T ] for some positive
T <∞ and let t1, t2, . . . , tk denote a realization of N(·) over
[0,T ]. Then the likelihood L of N(·) is expressible as

L =

(
k∏

i=1

λ(ti )

)
exp

(
−
∫ T

0
λ(t)dt

)
=

(
k∏

i=1

λ(ti )

)
e−Λ(T ) .
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Hawkes process likelihood

Assume process observed to time of kth arrival. The joint density is

L = f (t1, . . . , tk) =
k∏

i=1

f ∗(ti ) .

Rearrange hazard function definition of λ(t)

λ(t) =
f ∗(t)

1− F ∗(t)
=

dF∗(t)
dt

1− F ∗(t)
= −d log(1− F ∗(t))

dt

and integrate both sides over the interval (tk , t)

−
∫ t

tk

λ(u)du = log(1− F ∗(t))− log(1− F ∗(tk)) .

But F ∗(tk) = 0 because Tk+1 > tk , so

F ∗(t) = 1− exp

(
−
∫ t

tk

λ(u)du

)
and f ∗(t) = λ(t) exp

(
−
∫ t

tk

λ(u)du

)
.
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Hawkes process likelihood
So far, we have

L = f (t1, . . . , tk) =
k∏

i=1

f ∗(ti )

and

F ∗(t) = 1− exp

(
−
∫ t

tk

λ(u)du

)
and f ∗(t) = λ(t) exp

(
−
∫ t

tk

λ(u)du

)
.

Now suppose the process is observed to some time T > tk . Then the likelihood
includes the probability of not observing anything on the interval (tk ,T ]:

L = (1− F ∗(T ))
k∏

i=1

f ∗(ti ) = exp

(
−
∫ T

tk

λ(u)du

) k∏
i=1

f ∗(ti )

=

(
k∏

i=1

λ(ti ) exp

(
−
∫ ti

ti−1

λ(u)du

))
exp

(
−
∫ T

tk

λ(u)du

)

=

(
k∏

i=1

λ(ti )

)
e−Λ(T ) .
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Exponential Hawkes process likelihood
The log-likelihood for the interval [0, tk ] can be written

` = −Λ(tk) +
k∑

i=1

log(λ(ti )) ,

and Λ(tk) can be written

Λ(tk) =

∫ t1

0

λ(u)du +
k−1∑
i=1

∫ ti+1

ti

λ(u)du .

For the exponential Hawkes process, this becomes

Λ(tk) =

∫ t1

0

λdu +
k−1∑
i=1

∫ ti+1

ti

λ+
∑
tj<u

αe−β(u−tj )du

= λtk + α

k−1∑
i=1

∫ ti+1

ti

i∑
j=1

e−β(u−tj )du

= λtk + α

k−1∑
i=1

i∑
j=1

∫ ti+1

ti

e−β(u−tj )du
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Exponential Hawkes process likelihood

Continuing, we have

Λ(tk) = λtk + α

k−1∑
i=1

i∑
j=1

∫ ti+1

ti

e−β(u−tj )du

= λtk −
α

β

k−1∑
i=1

i∑
j=1

(
e−β(ti+1−tj ) − e−β(ti−tj )

)

= λtk −
α

β

k−1∑
i=1

(
e−β(tk−ti ) − e−β(ti−ti )

)

= λtk −
α

β

k−1∑
i=1

(
e−β(tk−ti ) − 1

)
.

Thus, the log-likelihood can be written

` = −λtk +
k∑

i=1

(
log

(
λ+ α

i−1∑
j=1

e−β(ti−tj )

)
+
α

β

(
e−β(tk−ti ) − 1

))
.
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Exponential Hawkes process likelihood

The log-likelihood

` = −λtk +
k∑

i=1

(
log

(
λ+ α

i−1∑
j=1

e−β(ti−tj )

)
+
α

β

(
e−β(tk−ti ) − 1

))
.

has quadratic computational complexity O(k2), but a recursion turns it into
linear complexity O(k). For i = 2, . . . , k, let A(i) =

∑i−1
j=1 e

−β(ti−tj ). Then

A(i) = e−βti+βti−1

i−1∑
j=1

e−βti−1+βtj = e−β(ti−ti−1)

(
1 +

i−2∑
j=1

e−β(ti−1−βtj )

)
= e−β(ti−ti−1) (1 + A(i − 1)) .

Letting A(1) = 0, the log-likelihood can be written

` = −λtk +
k∑

i=1

(
log (λ+ αA(i)) +

α

β

(
e−β(tk−ti ) − 1

))
.

Similar recursions are also available for the log-likelihood gradient.
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Nonlinear Hawkes process

Letting Ψ : R→ R+ be an arbitrary function, a nonlinear Hawkes
process has conditional intensity function

λ(t) = Ψ

(∫ t

0
g(t − u)dN(u)

)
.

The linear Hawkes process is a special case. One may incorporate
inhibition by specifying, say,

λ(t) = exp

(
µt −

∫ t

0
g(t − u)dN(u)

)
.

Recently, autoregressive neural networks (RNN, transformer NN)
have been used to model the function Ψ.
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Spatiotemporal Hawkes processes
I Spatiotemporal Hawkes processes are useful for modeling earthquakes,

wildfires, viral contagion and gun violence.

I The conditional intensity models the rate of events at locations
s ∈ X ⊂ RD :

λ(s, t|H(t)) = lim
∆s,∆t→0

E (N (B(s,∆s)× [t, t + ∆t)) |H(t))

|B(s,∆s)|∆t
.

I For {(s1, t1), . . . , (sk , . . . , tk) observed, a spatiotemporal Hawkes process
has conditional intensity

λ(s, t) = µ(s) +
∑
ti<t

g(s − si , t − ti ) ,

where the triggering function g is non-negative.

I The spatiotemporal HP also has a cluster process representation with
mean number of children for each event

n =

∫
X

∫ T

0

g(s, t)dsdt .
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Spatiotemporal Hawkes processes
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Spatiotemporal Hawkes process
The log-likelihood for the spatiotemporal Hawkes process takes a similar form
to that of the temporal Hawkes process:

` =
k∑

i=1

log (λ(si , ti ))−
∫
X

∫ T

0

λ(s, t)dsdt

=
k∑

i=1

log

µ(s) +
∑
ti<t

g(si − sj , ti − tj)


−
∫
X

∫ T

0

µ(s) +
∑
tj<t

g(s − sj , t − tj)dsdt .

The double summation in the first term implies an O(k2) computational
complexity for k observations. No linear-time recursion is known. In
EM/MCMC, it can be helpful to use the (still O(k2)) ‘complete data likelihood’

`c =
k∑

i=1

1{ui = 0} log (µ(si )) +
k∑

i=1

k∑
j=1

1{ui = j} log(g(si − sj , ti − tj))

−
∫
X

∫ T

0

λ(s, t)dsdt .
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Simulating the spatiotemporal Hawkes process

I Ogata (1998) proposes a two-stage algorithm that (1)
simulates the temporal HP obtained by integrating over space
and (2) simulates from the spatial inhomogeneous PP for
each timepoint.

I Zhuang, Ogata and Vere-Jones (2004) propose a cluster based
algorithm.
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Simulating the spatiotemporal Hawkes process

Again, define the branching number n =
∫
X

∫ T

0
g(s, t)dsdt. The following

algorithm simulates a sample path of a spatiotemporal Hawkes process.

1. Generate events from the background process with intensity µ(s) using a
method for simulating NHPP (e.g., thinning). Call events G (0);

2. let l = 0;

3. For each event i ∈ G (l), simulate the number of offspring O
(l)
i

N(i) ∼ Pois(n) and the position/time of each with the normalized g as
distribution.

4. Let G (l+1) =
⋃

i∈G (l) O
(l)
i

5. If G (l+1) not empty, let l = l + 1 and return to step 3. Otherwise, return⋃l
j=0 G

(j).
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