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Determinantal point processes

» A determinantal point process (DPP) on RP is determined by
a kernel K(x,x’).

» The joint intensities can be written

(13 63)

» The kernel defines an integral operator K acting on L?(RP)
that is self-adjoint, positive semidefinite and trace class.



Joint intensities of a DPP

Definition 1

The joint intensities of a point process N are functions (if any
exist) px : (RP) — [0,00) for k > 1, such that for any family of
disjoint sets D, ..., D, C RP,

k
E (H N(D;)> = /HD pr(x1, ..o xk)dxy .. .dx .

i

Definition 2
A point process N on RP is said to be a DPP with kernel K if its

Jjoint intensities satisfy

pk(x1, ..., xx) = det (K(X,',Xj))lSwSk

for every k > 1 and xy,...,xc € RP.



Permanental point processes
Leibniz' formula for the determinant of a k x k matrix M is

k
det(M) = Z <Sgn(0’)H Mi,U(f)) .
€Sk i=1
We denote the permanent of a k x k matrix M

k
per(M) = > [ Mioei -

€Sk i=1

Definition 3
A point process N on RP is said to be a permanental point process
with kernel K if its joint intensities satisfy

pr(x1, .y xk) = Per(K(Xian))1§iJ§k

for every k > 1 and x1,...,xc € RP.



Poisson processes, DPPs and PPPs

F1c 1. Samples of translation invariant point processes in the plane: Poisson (left), determi-

nantal (center) and permanental for K(z,w) = %esz%

2 2
(=1°+1w1") | Determinantal processes
ezxhibit repulsion, while per

tal processes exhibit clumping.
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DPP results

Lemma 1
Suppose {¢x}7_, is an orthonormal set in L2(RP). Then there
exists a DPP with kernel

Kxy) = 3 6u(x)8i(y).
k=1

Theorem 1

Let K determine a self-adjoint integral operator KC on L?>(RP) that
is locally trace-class. Then K defines a DPP on RP iff all the
eigenvalues of KC are in [0, 1].



DPP results

Theorem 2
Suppose N is a DPP with kernel K(x,y). Write

K y) =D Mou(x)di(y) s

k=1

where ¢y are normalized eigenfunctions with eigenvalues A\ € [0,1]. Let

I ~ Bernoulli(\¢) and define K's random analogue

Ki(x,y) =D ()i (v) -

Let N, be a DPP with kernel K;. Then
NN

In particular, the total number of points in N follows the distribution of the
sum of independent Bernoulli(A) r.v.s.



DPP example: non-intersecting random walks

Consider n independent simple symmetric walks on Z started from
il <--- < p, all even. Let Pj(t) be the t-step transition
probabilities. The probability the r.w.s are at j; < --- < j, at time
t and have non-intersecting paths is

P,'U'l(l') Piljn(t)
det :
Pi.jy (1) Pinja(t)
If t is even and we condition the walks to return to i1,..., I, at

time t, then the positions at time t/2 follow a DPP with
Hermitian kernel.



DPP example: Ginibre ensemble

Let @ be an n x n matrix with i.i.d. complex standard normal
entries. The eigenvalues of @ form a DPP on C with the kernel

n—1 —\k
Kn(z,w) = L -L0z+wp) (ZZVI) .
m !

As n — oo, we have a DPP on C with kernel

vk
K(z,w) = Loz 3 (Z:")
k=0 ’

™

_ 1 P riwpyrew
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Zero set of a Gaussian analytic function

The power series f(z) =Y ", a,z", where a, are i.i.d. standard
complex normals defines a random analytic function on the unit
disk (a.s.). The zero set of f is a determinantal process in the disk
with the Bergman kernel

K(z,w)zm Z(k—i—l Zw)
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DPPs on discrete sets

Let ) be a discrete set with n items. A point process N on ) is a
probability distribution on the power set 27.

Definition 4
A point process N is a determinantal point process if for Y CY
randomly sampled according to N we have for every S C Y

Pr(S CY)=detKs

for some similarity matrix K € R"*" that is symmetric and positive
semidefinite.

Let S be a two-element set with elements / and j. Then

Pr(S C V) = KiKjj — K2 = Pr(i C Y)Pr(j € Y) — KZ.
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Conditioning

DPPs are closed under conditioning:

P(ACY|BCY)=Pr(AUBC Y)/P(ACY)
det Kaun
~ TdetKa
det(Ka) det (Kg — KgaK, ' Kag)
- det(Ka)
= det (Kg — KgaK; ' Kag)
= det ([K — KyaK3 ' Kay|g) -
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Restrictions on K

» Because marginal probabilities of any set S C ) must be in
[0,1], all det(Ks) > 0 and hence K must be positive
semidefinite.

» Moreover, all eigenvalues of K must inhabit [0,1], i.e.
0<K<X1.

» Any K satisfying 0 < K < 1 defines a DPP.
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L-ensembles

» L-ensembles provide a convenient way to avoid dealing with
K <1 constraints.

» An L-ensemble is defined using a symmetric matrix L > 0 that
defines the atomic probability of an event set S thus:

Pri(S)=Pr(S=Y) xcdet(Ly)
» Conveniently, the normalizing constant is known:

> det(Ls) =det(L+1).

sy
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L-ensembles

Theorem 3
Forany S CY
> det(Ly) = det(L+ Isc)
SCYQy
Corollary 1
> det(Ly) = det(L + 1)
Yoy
Proof.

Let S from Theorem 3 equal the empty set.
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L-ensembles

Theorem 4
An L-ensemble is a DPP and its marginal kernel is

K=LL+N " =1—(L+N)"
Proof.
The marginal probability of a set S under the L-ensemble is

Pru(s C v) = sevey deLy) _ det(L+ Is)
TTE T Yycydet(ly) T det(L+ )

= det ((L+ Ise)(L+1)7")
= det (/SC(L )T (Lt /)—1)

— det (/SC(L + 1) 4 (Us + Ise) (/ L+ /)*1))

IlSClx‘SC‘ O

= det(/sc + /sK) = ‘ : \ = det(l‘5c|x‘5c‘)det(K5)

Ks se
= det(Ks) .
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L-ensembles

» Given a marginal kernel, we may construct an L-ensemble by
setting L = K(I — K)~ 1,

» The inverse of | — K might not exist, so DPPs are a larger
class than L-ensembles.

> IfL=>", )\kaVkT, then K =5, li—f\kvkvk-r.

» Linear kernel. Let X be an n x p design matrix (set of feature
vectors). Taking L = XX, we have

Pr.(S) o« det(Ls) = Vol ({xi}ics)

If p < n, the DPP will only have p points.
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Working with DPPs
» Complements: if Y ~ DPP(K), then Y ~ DPP(l — K)
» Conditioning:

det(Ls.
Pri(Y =SnUB|Sn C Y, Soue N Y =0) = —— (Ls,uB)

» Marginalization:
Pr(B C Y|S C Y) = det ([/ ~ L+ /55)—1]56]5)
» Scaling: if K/ =K for v € [0,1], then for all S C Y

Pric:(S C Y) = det(K%) = 41°IKs .

- det(Lsgut + /557)
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Elementary DPPs

» A DPP is elementary if every eigenvalue of K is 0 or 1.

» NV denotes an elementary DPP with marginal kernel K = ZVGV w' if
V is a set of orthonormal vectors.

» The expected total count for a DPP is

E(IY]) =

n

EQ 1iev})= Z Prie Y) = Z Ki = tr(K

i=1

» For an elementary DPP this is

E(|Y]) = tr(K (Zvv )—va—w.

Y| =

veVv veV

|V| a.s. because det(KY) = 0 when |Y| > |V].
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DPPs as mixtures of elementary DPPs

Lemma 2
A DPP with kernel L =Y""_; \jv;v.| is a mixture of elementary
DPPs:

_ 1 v .
PrL_m Z PrJH)\,

JC{1,2,...n} ieJ

where V_j = {V,'},'eJ
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Sampling DPPs

Algorithm 1 Sampling from a DPP

Input: eigendecomposition {(vy, An)}_; of L
J«—0
forn=1,2,...,N do
J = JU {n} with prob. 27
end for
V+ {'Un }nEJ
Y+ 0
while |[V| > 0 do
Select ¢ from Y with Pr(i) = ﬁ > eev(@Te:)?
Y «YUi
V « V|, an orthonormal basis for the subspace of V' orthogonal to e;
end while
Output: Y

Kulesza and Taskar, 2013
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Sampling DPPs
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(a) Sampling points on an interval

Kulesza and Taskar, 2013
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Sampling DPPs

(b) Sampling points in the plane

Kulesza and Taskar, 2013
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Sampling DPPs

» Finding the eigendecomposition of L is O(n3).

» Sampling algorithm is O(n|V/|3) for V the set of eigenvectors
selected in phase 1 and each repeated Gram-Schmidt to

compute V| is O(n|V|?).

24



Dual representation

» Let B be the D x N matrix with columns B; = g;¢; such that
L = BT B. Consider the D x D matrix

C=BB"T.
» Here, D is the dimension of the diversity feature function ¢.

» D is often fixed by design, whereas N may grow as more items
are modeled.

25



Dual representation

Proposition 1

The non-zero eigenvalues of L and C are identical, and the
corresponding eigenvectors are related by the matrix B. That is,

D
C=> Aalatf
d=1

is an eigendecomposition of C if and only if

S o) ()

is an eigendecomposition of L.

26



Dual representation
Proof.

First, assume {\g, ¥4 }5_; is an eigendecomposition of C. Then,

D 1 1 T D
A —Bﬂ?) (—Bﬂ?) =BT ol |B=B"B=1L.

Furthermore, we have

1 o712 1 o7a \T pTs 1.7
—B = —(B B =—0C
H\/E Vall” = 3 (B Va) (B ¥4) = =04 Cl
1, .74
= YdAdVdTVd = ].7
and
1o\ ( 1 7o ) 1 o1y
——B 'V B' 0y | = Vg CUyr
(\/)\d d) o Aada
_ VA oTo —0
VAd
A similar argument holds in the other direction when one accounts for the fact
L = B" B and has rank at most D. O

27



Dual representation and computing

» Normalization: the normalization constant is

D
det(L+1) = [J(Ag + 1) =det(C+1),
d=1

which only takes O(D3) time.

» Marginalization: get entries of K using C. First get the
eigendecomposition C = Zd 1)\dvdvd Then

243G ()

One may therefore obtain the marginal probability of an event
in time O(D?). For a k event, this becomes O(D?k? + k3).
This beats the usual O(n®) to translate from L to K.

D
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Dual representation and computing

In general, one may represent the orthonormal set V' in R” using
the set V in RP with the mapping

vV ={BTolveV}.

One may implicitly obtain linear combinations of vectors in V by
performing actions on their preimages: vi + vo = BT (01 + 0»).
Moreover,

VlTV2 = (BT\71)T(BT\72) = ‘71TC‘727

so we can compute dot products of elements in V in time O(D?).

We can implicitly normalize the elements of V' by updating

. v
V& <.
vTCo

29



Sampling DPPs

Algorithm 1 Sampling from a DPP
Input: eigendecomposition {(vs, Ay)}Y_; of L
J+0
forn=1,2,...,N do
J < J U {n} with prob. )\j—l
end for
V {'Un }nEJ
Y+ 0
while |[V| > 0 do
Select ¢ from Y with Pr(i) = ﬁ Y pev(@Te:)?
Y««YU:
V « V|, an orthonormal basis for the subspace of V' orthogonal to e;
end while
Output: Y

Can we use the dual representation to speed up the sampling of i
and Gram-Schmidt steps?

Kulesza and Taskar, 2013
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Dual representation and computing

The sampling step is handled thus:

The entire distribution may be computed in time O(nD|V/|)
instead of O(n%).

31



Sampling DPPs

Algorithm 3 Sampling from a DPP (dual representation)

Input: eigendecomposition {(#n, An)}N_; of C

J«0

forn=1,2,...,N do
J+—Ju {n} w1th prob.

XnT +1
end for
Ve { )
< 2 Con Jnes
Y+ 0

while [V| > 0 do
Select ¢ from Y with Pr(z) =
Y+ Yui
Let @) be a vector in V with B 6y # 0
Update V « {6 ~ 2B D eV - {1‘;0}}
Orthonormalize V with respect to the dot product (&1, ds) = ; Cdy

end while
Output: Y

T
|V\ uev(” B)2

Kulesza and Taskar, 2013
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Quality-diversity representation

In addition to the Gram matrix representation L = BT B, we can
factor each column B; as the product of a ‘quality’ term g; > 0
and a normalized ‘diversity feature’ ¢; € RP. Thus,

Li = qid] #jq; -

If gj communicates the ‘goodness’ of item i, then

This representation allows one to independently model quality and
diversity using the model

Pri(Y) o (H q,2> det(Sy)

ieY

33



Conditional DPPs

» A conditional DPP takes the form of an L-ensemble
Pri(Y|X) o det(Ly(X)).
» [ is a positive semi-definite kernel matrix.
» The normalizing constant takes the form det(L(X) + /).
» Using the quality-diversity decomposition, we have
Lj(X) = ai(X)9:(X) " ¢;(X)q;(X)

for gi >0, ¢; € RP and [|¢|| = 1.
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Supervised learning

We observe {Yt,Xt}thl and assume individual Y;s generated
independently with probabilities

det(Ly(X,0))
det(L(X,0)+ 1)~

Pr(Y]X,0) =

Then the log-likelihood takes the form

.
0(0) = log (H Pr(Ye| Xz, 9)>

t=1

.
= (log det (Ly, (X;,0)) — log det (L (X;, 0) + /)) :

t=1

35



Supervised learning

Suppose one keeps the feature functions ¢;(X) fixed but models
the quality scores with the log-linear model

qi(X,0) = "X
Then the probability of a single sample can be written

Zy/gy det SY/ Hiey/ ef,'(X)TQ .

The resulting log-likelihood is convex in 6:

0(0) o< 0T Y " £i(X) —log Y exp <eT > f,-(X)) det Sy/(X).

ieYy Y'CY ey’

Pr(Y|X,0) =

36



k-DPPs

» A k-DPP on a discrete set Y = {1,2,..., N} is a distribution
over all sets Y C Y with cardinality k.

» A k-DPP is obtained by conditioning a standard DPP on the
event that the set Y has cardinality k.

» The k-DPP Nf has probabilities

- det(Ly)
Xk det(Lyr)

Pri(Y)

37



k-DPPs: normalization

Define the kth elementary symmetric polynomial on A1, ..., An

ek()\1,...,)\/\/)= Z H)\,,‘

JCA{1,...,N} neJ
|J

For example,

et(A1, A2, A3) = A1+ X2+ A3
(A1, A2, A3) = A da + At ds + dods
e3(A1, A2, A3) = Mdeds .

Proposition 2

The normalizing constant for a k-DPP is

Zi = Z det(Ly/) = ek()\l,. . .,)\N),

[Y'|=k

where \, are the eigenvalues of L.

38



k-DPPs: normalization
Proof.

Recalling that

> det(Ly) = det(L+1),
yCy

we know

> det(Ly/) =det(L+1) > Pri(Y').

1Y/ |=k 1Y/ |=k

Then, because every DPP is a mixture of elementary DPPs:

det(L+1) 3 pr (v') = S+ ) SO P

1Y/ |=k det(L +1) |Y/|=k JC{1,...,N} neJ
-3 P [T
|J|=k | Y |=k neJ
- I
|J|=k n€J
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Computing elementary symmetric polynomials

Use the shorthand ey = ex (M1, ...

e,i\’—ek

,An), we have the recursion

-1
)\Nek 1 -

Thus, the following algorithm computes el in time O(Nk).

Algorithm 7 Computing the elementary symmetric polynomials

Input: k, eigenvalues A1, Ao, ... AN
eg+—1 ¥Yne{0,1,2,...,N}
e+ 0 Vie{l,2,...,k}

fori=1,2,...k do
for n =1, 2 ,N do
e + e +)\nel 1
end for
end for
Output: eg(A1,Az,...,AN) = ekN

Kulesza and Taskar, 2013
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k-DPPs: sampling

» One may use a (slow) rejection sampling approach, sampling
DPPs and discarding those for which | Y| # k.

» It is more efficient to first recognize that, when |Y| = k

det(L+1)

N
€k

Pri(Y) = Pr.(Y)

and therefore

1
M= 2 P

ned

» A k-DPP is also a mixture of elementary DPPs! So if we can
sample k eigenvalues, we can then use the mixture of
elementary DPPs to generate samples.
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k-DPPs: sampling

The following O(Nk) algorithm samples sets of k eigenvalues
according to desired probabilities

Pr(J) = w I1r-

k neJ

Algorithm 8 Sampling k eigenvectors
Input: k, eigenvalues A1, Ag,..., AN
compute e} for I =0,1,...,kand n =0,1,..., N (Algorithm 7)
J«0
Lk
forn=N,...,2,1do
if /=0 then
break
end if
if u~U[0,1] < Ay
J «— JU{n}
l+—1-1
end if
end for
Output: J

n—1
€11

then

on

Kulesza and Taskar, 2013



k-DPPs: marginalization

Recall that for a general L-ensemble, we have

Pri(BC YAC Y) = det ([’ - [(L+ ’AC)_I]AC]B)
= det(Lé).
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k-DPPs: marginalization

k-DPPs are not DPPs and do not have a marginal kernel. But for |A| < k, we
have:

Pri(ACY)= Y Pri(Y'UA)

|Y!|=k—|A|
Y NA=0
det(L -+ I) Z /
=—-T" Pri(Y' UA)
Z |Y!|=k—|A|
Y/'NA=0
det(L+1) .
= —_—— = C C
7 > Pr(Y=Y UAACY)Pr(ACY)

1Y/ |=k—|A|
Y'NA=0
_ Z/i|A| det(L+ 1)
T Ze det(LA4)

Pri(ACY),

where

Zd g =det(L*+1) > Pr(Y=Y UAACY)= >  det(Ly)
[ Y |=k—|A]| |Y! |=k—|A|
Y/ NA=0 Y/'NA=0

is the normalizing constant for the (k — |A])-DPP with kernel L*.
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k-DPPs: marginalization

Thus, the marginal probabilities for a k-DPP are the same as those
of the DPP with the same kernel but properly renormalized. By
observing that

det(L?)  Pri(ACY)
det(L+1)  det(LA+1)’

(since 1/ det(LA + 1) is the probability of observing nothing else
conditioned on A), the equation simplifies further:

Z/f‘—|A\ det(L+ 1)

Prk(AC Y) = Pri(ACY
(ACY) Zc det(LA+ 1) (ACY)
ZA
k—|A
- 721(' Ldet(LA) = Z{ 4 Pri(A).

Computing such a probability is O((N — |A|)3) and very inefficient
for |A| small.
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k-DPPs: singleton marginals

First, write the marginal probability of an item J using elementary DPPs:

Pri(ic Y) = eiN S Priev)[] a

ko g1=k n'eJ

But the marginal kernel of an elementary DPP is }_ _, VoV, , 5o this becomes:

Pri(i Y):eiNZ <Ze v,,)> I

k \J\:k neJ n'el

NZe Vn) Z H)‘"’

Jo{n} n'€J
[J1=k

n

72(61 Vn2 An—

k

If we have the eigendecomposition of L and know the values e,:_”l/e,’(v, then we

can obtain all singleton marginals in time O(N?). e can be computed in time
O(Nk) and all €, ", can be computed in time O(Nk). This can be improved to

O(N log(N)k).
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k-DPPs: conditioning

For |A| + |B| = k,

Pri(Y = AUBJAC Y) x Prif(Y = AUB)
x Pr (Y =AUB)
x Pri(Y=AUBJIACY)
o det(L3).

So the conditional k-DPP is a (k—|A|)-DPP.
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