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Determinantal point processes

I A determinantal point process (DPP) on RD is determined by
a kernel K (x , x ′).

I The joint intensities can be written

det

(
K (xi , xi ) K (xi , xj)
K (xi , xj) K (xj , xj)

)
I The kernel defines an integral operator K acting on L2(RD)

that is self-adjoint, positive semidefinite and trace class.
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Joint intensities of a DPP

Definition 1
The joint intensities of a point process N are functions (if any
exist) ρk : (RD)k → [0,∞) for k ≥ 1, such that for any family of
disjoint sets D1, . . . ,Dk ⊂ RD ,

E

(
k∏

i=1

N(Di )

)
=

∫
∏

Di

ρk(x1, . . . , xk)dx1 . . . dxk .

Definition 2
A point process N on RD is said to be a DPP with kernel K if its
joint intensities satisfy

ρk(x1, . . . , xk) = det (K (xi , xj))1≤i ,j≤k

for every k ≥ 1 and x1, . . . , xk ∈ RD .
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Permanental point processes
Leibniz’ formula for the determinant of a k × k matrix M is

det(M) =
∑
σ∈Sk

(
sgn(σ)

k∏
i=1

Mi ,σ(i)

)
.

We denote the permanent of a k × k matrix M

per(M) =
∑
σ∈Sk

k∏
i=1

Mi ,σ(i) .

Definition 3
A point process N on RD is said to be a permanental point process
with kernel K if its joint intensities satisfy

ρk(x1, . . . , xk) = per (K (xi , xj))1≤i ,j≤k

for every k ≥ 1 and x1, . . . , xk ∈ RD .
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Poisson processes, DPPs and PPPs
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DPP results

Lemma 1
Suppose {φk}nk=1 is an orthonormal set in L2(RD). Then there
exists a DPP with kernel

K (x , y) =
n∑

k=1

φk(x)φk(y) .

Theorem 1
Let K determine a self-adjoint integral operator K on L2(RD) that
is locally trace-class. Then K defines a DPP on RD iff all the
eigenvalues of K are in [0, 1].
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DPP results

Theorem 2
Suppose N is a DPP with kernel K(x , y). Write

K(x , y) =
∞∑
k=1

λkφk(x)φk(y) ,

where φk are normalized eigenfunctions with eigenvalues λk ∈ [0, 1]. Let

Ik
⊥∼ Bernoulli(λk) and define K ’s random analogue

KI (x , y) =
∞∑
k=1

Ikφk(x)φk(y) .

Let NI be a DPP with kernel Ki . Then

N
d
= NI .

In particular, the total number of points in N follows the distribution of the
sum of independent Bernoulli(λk) r.v.s.

7



DPP example: non-intersecting random walks

Consider n independent simple symmetric walks on Z started from
i1 < · · · < in, all even. Let Pij(t) be the t-step transition
probabilities. The probability the r.w.s are at j1 < · · · < jn at time
t and have non-intersecting paths is

det

 Pi1j1(t) . . . Pi1jn(t)
...

. . .

Pinj1(t) Pinjn(t)

 .

If t is even and we condition the walks to return to i1, . . . , in at
time t, then the positions at time t/2 follow a DPP with
Hermitian kernel.
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DPP example: Ginibre ensemble

Let Q be an n × n matrix with i.i.d. complex standard normal
entries. The eigenvalues of Q form a DPP on C with the kernel

Kn(z ,w) =
1

π
e−

1
2
(|z|2+|w |2)

n−1∑
k=0

(zw)k

k!
.

As n→∞, we have a DPP on C with kernel

K (z ,w) =
1

π
e−

1
2
(|z|2+|w |2)

∞∑
k=0

(zw)k

k!

=
1

π
e−

1
2
(|z|2+|w |2)+zw .
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Zero set of a Gaussian analytic function

The power series f (z) =
∑∞

n=0 anz
n, where an are i.i.d. standard

complex normals defines a random analytic function on the unit
disk (a.s.). The zero set of f is a determinantal process in the disk
with the Bergman kernel

K (z ,w) =
1

π(1− zw)2
=

1

π

∞∑
k=0

(k + 1)(zw)k .
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DPPs on discrete sets

Let Y be a discrete set with n items. A point process N on Y is a
probability distribution on the power set 2Y .

Definition 4
A point process N is a determinantal point process if for Y ⊆ Y
randomly sampled according to N we have for every S ⊆ Y

Pr (S ⊆ Y ) = detKS

for some similarity matrix K ∈ Rn×n that is symmetric and positive
semidefinite.

Let S be a two-element set with elements i and j . Then

Pr(S ⊂ Y ) = KiiKjj − K 2
ij = Pr(i ⊂ Y )Pr(j ⊂ Y )− K 2

ij .
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Conditioning

DPPs are closed under conditioning:

Pr(A ⊆ Y |B ⊆ Y ) = Pr(A ∪ B ⊆ Y )/Pr(A ⊆ Y )

=
detKA∪B

detKA

=
det(KA) det

(
KB − KBAK

−1
A KAB

)
det(KA)

= det
(
KB − KBAK

−1
A KAB

)
= det

([
K − KYAK

−1
A KAY

]
B

)
.
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Restrictions on K

I Because marginal probabilities of any set S ⊆ Y must be in
[0, 1], all det(KS) ≥ 0 and hence K must be positive
semidefinite.

I Moreover, all eigenvalues of K must inhabit [0, 1], i.e.
0 � K � 1.

I Any K satisfying 0 � K � 1 defines a DPP.
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L-ensembles

I L-ensembles provide a convenient way to avoid dealing with
K � 1 constraints.

I An L-ensemble is defined using a symmetric matrix L � 0 that
defines the atomic probability of an event set S thus:

PrL(S) = Pr(S = Y ) ∝ det (LY )

I Conveniently, the normalizing constant is known:∑
S⊆Y

det (LS) = det(L + I ) .
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L-ensembles

Theorem 3
For any S ⊆ Y ∑

S⊆Y⊆Y
det(LY ) = det(L + ISc )

Corollary 1

∑
Y⊆Y

det(LY ) = det(L + I )

Proof.
Let S from Theorem 3 equal the empty set.
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L-ensembles
Theorem 4
An L-ensemble is a DPP and its marginal kernel is

K = L(L + I )−1 = I − (L + I )−1

Proof.
The marginal probability of a set S under the L-ensemble is

PrL(S ⊆ Y ) =

∑
S⊆Y⊆Y det(LY )∑
Y⊆Y det(LY )

=
det(L + ISc )

det(L + I )

= det
(

(L + ISc )(L + I )−1
)

= det
(
ISc (L + I )−1 + I − (L + I )−1

)
= det

(
ISc (L + I )−1 + (IS + ISc )

(
I − (L + I )−1

))
= det(ISc + ISK) =

∣∣∣∣ I|Sc |×|Sc | 0
KS,Sc KS

∣∣∣∣ = det(I|Sc |×|Sc |) det(KS)

= det(KS) .
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L-ensembles

I Given a marginal kernel, we may construct an L-ensemble by
setting L = K (I − K )−1.

I The inverse of I − K might not exist, so DPPs are a larger
class than L-ensembles.

I If L =
∑

k λkvkv
T
k , then K =

∑
k

λk
1+λk

vkv
T
k .

I Linear kernel. Let X be an n × p design matrix (set of feature
vectors). Taking L = XXT , we have

PrL(S) ∝ det(LS) = Vol2({xi}i∈S)

If p < n, the DPP will only have p points.
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Working with DPPs

I Complements: if Y ∼ DPP(K ), then Y c ∼ DPP(I − K )

I Conditioning:

PrL(Y = Sin ∪ B|Sin ⊆ Y ,Sout ∩ Y = ∅) =
det(LSin∪B)

det(LSc
out

+ ISc
in

)

I Marginalization:

Pr(B ⊆ Y |S ⊆ Y ) = det
([

I −
[
(L + ISc )−1

]
Sc

]
B

)
I Scaling: if K ′ = γK for γ ∈ [0, 1], then for all S ⊆ Y

PrK ′(S ⊆ Y ) = det(K ′S) = γ|S |KS .
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Elementary DPPs

I A DPP is elementary if every eigenvalue of K is 0 or 1.

I NV denotes an elementary DPP with marginal kernel KV =
∑

v∈V vvT if
V is a set of orthonormal vectors.

I The expected total count for a DPP is

E(|Y |) = E(
n∑

i=1

1{i ∈ Y }) =
n∑

i=1

Pr(i ∈ Y ) =
n∑

i=1

Kii = tr(K) .

I For an elementary DPP this is

E(|Y |) = tr(KV ) = tr

(∑
v∈V

vvT

)
=
∑
v∈V

vT v = |V | .

I Furthermore, |Y | = |V | a.s. because det(KV
Y ) = 0 when |Y | > |V |.
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DPPs as mixtures of elementary DPPs

Lemma 2
A DPP with kernel L =

∑n
i=1 λiviv

T
i is a mixture of elementary

DPPs:

PrL =
1

det(L + I )

∑
J⊆{1,2,...,n}

PrVJ
∏
i∈J

λi

where VJ = {vi}i∈J
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Sampling DPPs
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Sampling DPPs
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Sampling DPPs
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Sampling DPPs

I Finding the eigendecomposition of L is O(n3).

I Sampling algorithm is O(n|V |3) for V the set of eigenvectors
selected in phase 1 and each repeated Gram-Schmidt to
compute V⊥ is O(n|V |2).
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Dual representation

I Let B be the D × N matrix with columns Bi = qiφi such that
L = BTB. Consider the D × D matrix

C = BBT .

I Here, D is the dimension of the diversity feature function φ.

I D is often fixed by design, whereas N may grow as more items
are modeled.

25



Dual representation

Proposition 1

The non-zero eigenvalues of L and C are identical, and the
corresponding eigenvectors are related by the matrix B. That is,

C =
D∑

d=1

λd v̂d v̂
T
d

is an eigendecomposition of C if and only if

L =
D∑

d=1

λd

(
1√
λd

BT v̂d

)(
1√
λd

BT v̂d

)T

is an eigendecomposition of L.
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Dual representation
Proof.
First, assume {λd , v̂d}Dd=1 is an eigendecomposition of C . Then,

D∑
d=1

λd

(
1√
λd

BT v̂d

)(
1√
λd

BT v̂d

)T

= BT

(
D∑

d=1

v̂d v̂
T
d

)
B = BTB = L .

Furthermore, we have

|| 1√
λd

BT v̂d ||2 =
1

λd
(BT v̂d)T (BT v̂d) =

1

λd
v̂T
d Cv̂d

=
1

λd
λd v̂

T
d v̂d = 1 ,

and (
1√
λd

BT v̂d

)T (
1√
λd′

BT v̂d′

)
=

1√
λdλd′

v̂T
d Cv̂d′

=

√
λd′√
λd

v̂T
d v̂d′ = 0 .

A similar argument holds in the other direction when one accounts for the fact
L = BTB and has rank at most D.
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Dual representation and computing

I Normalization: the normalization constant is

det(L + I ) =
D∏

d=1

(λd + 1) = det(C + I ) ,

which only takes O(D3) time.

I Marginalization: get entries of K using C . First get the
eigendecomposition C =

∑D
d=1 λd v̂d v̂

T
d . Then

Kij =
D∑

d=1

λd
λd + 1

(
1√
λd

BT
i v̂d

)T ( 1√
λd

BT
j v̂d

)
.

One may therefore obtain the marginal probability of an event
in time O(D2). For a k event, this becomes O(D2k2 + k3).
This beats the usual O(n3) to translate from L to K .
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Dual representation and computing

In general, one may represent the orthonormal set V in Rn using
the set V̂ in RD with the mapping

V = {BT v̂ |v̂ ∈ V̂ } .

One may implicitly obtain linear combinations of vectors in V by
performing actions on their preimages: v1 + v2 = BT (v̂1 + v̂2).
Moreover,

vT1 v2 = (BT v̂1)T (BT v̂2) = v̂T1 Cv̂2 ,

so we can compute dot products of elements in V in time O(D2).
We can implicitly normalize the elements of V by updating

v̂ ←− v̂

v̂TCv̂
.
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Sampling DPPs
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Can we use the dual representation to speed up the sampling of i
and Gram-Schmidt steps?
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Dual representation and computing

The sampling step is handled thus:

Pr(i) =
1

|V |
∑
v∈V

(vT ei )
2 =

1

|V̂ |

∑
v̂∈V̂

((BT v̂)T ei )
2

=
1

|V̂ |

∑
v̂∈V̂

(BT
i v̂)2

The entire distribution may be computed in time O(nD|V̂ |)
instead of O(n3).
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Sampling DPPs
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Quality-diversity representation

In addition to the Gram matrix representation L = BTB, we can
factor each column Bi as the product of a ‘quality’ term qi > 0
and a normalized ‘diversity feature’ φi ∈ RD . Thus,

Lij = qiφ
T
i φjqj .

If qi communicates the ‘goodness’ of item i , then

Sij =
Lij√
LiiLjj

.

This representation allows one to independently model quality and
diversity using the model

PrL(Y ) ∝

(∏
i∈Y

q2i

)
det(SY )
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Conditional DPPs

I A conditional DPP takes the form of an L-ensemble

PrL(Y |X ) ∝ det(LY (X )) .

I L is a positive semi-definite kernel matrix.

I The normalizing constant takes the form det(L(X ) + I ).

I Using the quality-diversity decomposition, we have

Lij(X ) = qi (X )φi (X )Tφj(X )qj(X )

for qi > 0, φi ∈ RD and ||φi || = 1.
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Supervised learning

We observe {Yt ,Xt}Tt=1 and assume individual Yts generated
independently with probabilities

Pr(Y |X , θ) =
det(LY (X , θ))

det(L(X , θ) + I )
.

Then the log-likelihood takes the form

`(θ) = log

(
T∏
t=1

Pr(Yt |Xt , θ)

)

=
T∑
t=1

(
log det (LYt (Xt , θ))− log det (L (Xt , θ) + I )

)
.
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Supervised learning

Suppose one keeps the feature functions φi (X ) fixed but models
the quality scores with the log-linear model

qi (X , θ) = efi (X )T θ .

Then the probability of a single sample can be written

Pr(Y |X , θ) =
detSY

∏
i∈Y efi (X )T θ∑

Y ′⊆Y detSY ′
∏

i∈Y ′ e
fi (X )T θ

.

The resulting log-likelihood is convex in θ:

`(θ) ∝ θT
∑
i∈Y

fi (X )− log
∑
Y ′⊆Y

exp

(
θT
∑
i∈Y ′

fi (X )

)
detSY ′(X ) .
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k-DPPs

I A k-DPP on a discrete set Y = {1, 2, . . . ,N} is a distribution
over all sets Y ⊆ Y with cardinality k .

I A k-DPP is obtained by conditioning a standard DPP on the
event that the set Y has cardinality k .

I The k-DPP Nk
L has probabilities

PrkL(Y ) =
det(LY )∑

|Y ′|=k det(LY ′)
.
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k-DPPs: normalization

Define the kth elementary symmetric polynomial on λ1, . . . , λN

ek(λ1, . . . , λN) =
∑

J⊆{1,...,N}
|J|=k

∏
n∈J

λn .

For example,

e1(λ1, λ2, λ3) = λ1 + λ2 + λ3

e2(λ1, λ2, λ3) = λ1λ2 + λ1λ3 + λ2λ3

e3(λ1, λ2, λ3) = λ1λ2λ3 .

Proposition 2
The normalizing constant for a k-DPP is

Zk =
∑
|Y ′|=k

det(LY ′) = ek(λ1, . . . , λN) ,

where λn are the eigenvalues of L.

38



k-DPPs: normalization

Proof.
Recalling that ∑

Y⊆Y

det(LY ) = det(L + I ) ,

we know ∑
|Y ′|=k

det(LY ′) = det(L + I )
∑
|Y ′|=k

PrL(Y ′) .

Then, because every DPP is a mixture of elementary DPPs:

det(L + I )
∑
|Y ′|=k

PrL(Y ′) =
det(L + I )

det(L + I )

∑
|Y ′|=k

∑
J⊆{1,...,N}

PrVJ (Y ′)
∏
n∈J

λn

=
∑
|J|=k

∑
|Y ′|=k

PrVJ (Y ′)
∏
n∈J

λn

=
∑
|J|=k

∏
n∈J

λn .
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Computing elementary symmetric polynomials

Use the shorthand eNk = eK (λ1, . . . , λN), we have the recursion

eNk = eN−1k λNe
N−1
k−1 .

Thus, the following algorithm computes eNk in time O(Nk).
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k-DPPs: sampling

I One may use a (slow) rejection sampling approach, sampling
DPPs and discarding those for which |Y | 6= k .

I It is more efficient to first recognize that, when |Y | = k

PrkL(Y ) =
det(L + I )

eNk
PrL(Y )

and therefore

PrkL(Y ) =
1

eNk

∑
|J|=k

PrVJ (Y )
∏
n∈J

λn .

I A k-DPP is also a mixture of elementary DPPs! So if we can
sample k eigenvalues, we can then use the mixture of
elementary DPPs to generate samples.
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k-DPPs: sampling
The following O(Nk) algorithm samples sets of k eigenvalues
according to desired probabilities

Pr(J) =
1{|J| = k}

eNk

∏
n∈J

λn .
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k-DPPs: marginalization

Recall that for a general L-ensemble, we have

PrL(B ⊆ Y |A ⊆ Y ) = det
([

I −
[
(L + IAc )−1

]
Ac

]
B

)
= det(LAB) .
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k-DPPs: marginalization
k-DPPs are not DPPs and do not have a marginal kernel. But for |A| ≤ k, we
have:

PrkL(A ⊆ Y ) =
∑

|Y ′|=k−|A|
Y ′∩A=∅

PrkL(Y ′ ∪ A)

=
det(L + I )

Zk

∑
|Y ′|=k−|A|
Y ′∩A=∅

PrL(Y ′ ∪ A)

=
det(L + I )

Zk

∑
|Y ′|=k−|A|
Y ′∩A=∅

PrL(Y = Y ′ ∪ A|A ⊆ Y )PrL(A ⊆ Y )

=
ZA
k−|A|

Zk

det(L + I )

det(LA + I )
PrL(A ⊆ Y ) ,

where

ZA
k−|A| = det(LA + I )

∑
|Y ′|=k−|A|
Y ′∩A=∅

PrL(Y = Y ′ ∪ A|A ⊆ Y ) =
∑

|Y ′|=k−|A|
Y ′∩A=∅

det(LA
Y ′)

is the normalizing constant for the (k − |A|)-DPP with kernel LA.
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k-DPPs: marginalization
Thus, the marginal probabilities for a k-DPP are the same as those
of the DPP with the same kernel but properly renormalized. By
observing that

det(LA)

det(L + I )
=

PrL(A ⊆ Y )

det(LA + I )
,

(since 1/ det(LA + I ) is the probability of observing nothing else
conditioned on A), the equation simplifies further:

PrkL(A ⊆ Y ) =
ZA
k−|A|

Zk

det(L + I )

det(LA + I )
PrL(A ⊆ Y )

=
ZA
k−|A|

Zk
det(LA) = ZA

k−|A|PrkL(A) .

Computing such a probability is O((N − |A|)3) and very inefficient
for |A| small.
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k-DPPs: singleton marginals
First, write the marginal probability of an item i using elementary DPPs:

PrkL(i ∈ Y ) =
1

eNk

∑
|J|=k

PrVJ (i ∈ Y )
∏
n′∈J

λn′ .

But the marginal kernel of an elementary DPP is
∑

n∈J vnv
T
n , so this becomes:

PrkL(i ∈ Y ) =
1

eNk

∑
|J|=k

(∑
n∈J

(eTi vn)2
) ∏

n′∈J

λn′

=
1

eNk

N∑
n=1

(eTi vn)2
∑

J⊃{n}
|J|=k

∏
n′∈J

λn′

=
N∑

n=1

(eTi vn)2λn

e−n
k−1

eNk

If we have the eigendecomposition of L and know the values e−n
k−1/e

N
k , then we

can obtain all singleton marginals in time O(N2). eNk can be computed in time
O(Nk) and all e−n

k−1 can be computed in time O(N2k). This can be improved to
O(N log(N)k).
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k-DPPs: conditioning

For |A|+ |B| = k,

PrkL(Y = A ∪ B|A ⊆ Y ) ∝ PrkL(Y = A ∪ B)

∝ PrL(Y = A ∪ B)

∝ PrL(Y = A ∪ B|A ⊆ Y )

∝ det(LAB) .

So the conditional k-DPP is a (k−|A|)-DPP.
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